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The dielectric response of classical polar fluids is by now well understood
for bulk systems, where the permittivity can be calculated by a variety of
methods within the linear response regime. Near interfaces or inhomogeneities,
one may attempt to describe the dielectric response of the fluid using a local
dielectric tensor ε(r), for which an explicit expression can be derived from
linear response theory. This chapter describes the limitations of this approach,
exemplified by Molecular Dynamics simulations of polar fluids confined to a
slit or a spherical cavity.

1 Polar Fluids: A Closed Chapter?

Many solvents are made up of highly polar molecules, water being the fore-
most, although somewhat atypical example (due to its hydrogen bonding ca-
pacity). Hence it is hardly surprising that a large body of theoretical work
has gone into the understanding of polar liquids, and in particular of their
dielectric response [1]. Although polar molecules are invariably non-spherical,
much insight has been gained from integral equation theories [2] and simu-
lations [3] of simple models involving spherical particles (e.g. hard spheres
or Lennard–Jones particles) with an embedded point dipole, the Stockmayer
potential being a much studied example. While this field was very active in
the eighties and early nineties, it has slowed down since, giving the false im-
pression that everything is well understood. This chapter addresses two open
problems, which have only very recently received some attention:

(a) The point dipole limit is a valid approximation only for intermolecular
distances significantly larger than their size. At shorter range, details of
the molecular charge distribution become crucially important, as illus-
trated by the standard models for water (TIP5P, SPC/E, etc.). Hence
it is of fundamental interest to investigate models with extended dipoles
(constructed from two opposite charges separated by a finite distance d)
and to determine how, for a given dipole moment, the extension d af-
fects the dielectric properties and phase behaviour of dense polar fluids,
compared to the point dipole limit.

(b) While the relation between the dielectric permittivity ε and dipolar fluctu-
ations is well understood in bulk, virtually nothing is known about such
fluctuations near an interface between a fluid and a dielectric medium
mimicking e.g. a substrate, an electrode, or a membrane. In particular, is
it legitimate to define a local permittivity ε(r) on a nanometric scale, and
how is such a profile related to local fluctuations of the dipole moment?

This is of key importance for large-scale biomolecular simulations based on
an implicit solvent assumption. The present chapter summarises some of the
partial answers to these two open questions which we obtained recently [4–8].



48 V. Ballenegger et al.

2 Bulk Behaviour of Point
and Extended Dipole Molecules

We consider spherical molecules carrying extended dipoles consisting of two
opposite charges ±q, displaced symmetrically by a distance d/2 from the cen-
tre of the molecule, such that the absolute dipole moment is µ = qd. Obviously
the intramolecular charge distribution ρ(r) = q [δ(r + d/2) − δ(r − d/2)] will
give rise to higher order multipole moments, starting with an octopole.

Only in the limit q → ∞ and d → 0 for fixed µ (point dipole) will the
electrostatic interaction between the molecules reduce to the familiar point
dipole interaction:

vµ,µ(1, 2) = (µ1 · ∇1)(µ2 · ∇2)G(r1, r2) (1)

where the Green’s function G(r1, r2) is the solution of Poisson’s equation
for a unit charge, subject to appropriate boundary conditions dictated by
the surrounding media; for an unbounded system G(r1, r2) reduces to the
Coulomb potential 1/|r1 − r2|.

In view of the fact that intramolecular charge distributions are always
extended, we examined how the dipole extension, characterised by the ratio
d/σ (where σ is the molecular diameter) affects the structural and dielectric
properties of a dense polar fluid, for a fixed dipole moment µ. The ques-
tion was investigated in some details by extensive Molecular Dynamics (MD)
simulations reported in [6]. The polar molecules interact via a Lennard–Jones
potential or a short-range soft-core potential v0(r) = 4u(σ/r)12, plus the long-
range Coulomb interaction due to the two point charges ±q separated by a
distance d inside each molecule.

The Hamiltonian of the system of N molecules is, under periodic boundary
conditions, whereby the periodic replications of the basic arbitrary simulation
cell of length L form an infinite sphere, which is itself embedded in an infinite
region of permittivity ε′ :

H =
∑

i<j

[v0(rij) + qiqjψ(rij)] −
κ√
π

N∑

i=1

q2
i +

2π|M |2
(2ε′ + 1)L3

(2)

where M =
∑N

i=1 qiri is the total dipole moment of the sample and ψ(rij) is
the usual Ewald sum over Coulombic interactions between two charges and
their periodic images; κ is the inverse convergence length used in the Ewald
summation [9].

The pair structure can be characterised either by site-site correlation func-
tions h++(r) = h−−(r) and h+−(r), or by the molecular pair correlation
function h(1, 2) = h(r, µ̂1, µ̂2), which can be expanded in rotational invari-
ants [10]:

h(1, 2) = h000(r) + h110(r)Φ110(1, 2) + h112(r)Φ112(1, 2) + · · · (3)
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where

Φ110(1, 2) = µ̂1 · µ̂2 (4a)

Φ112(1, 2) = 3(µ̂1 · r̂)(µ̂2 · r̂) − µ̂1 · µ̂2 (4b)

The bulk permittivity ε of the fluid may be determined by one of the following
five routes (not mentioning applied field simulations):

(a) Via Kirkwood’s fluctuation formula [11]

(ε− 1)(2ε′ + 1)
2ε′ + ε

=
4π
3V

〈
|M |2

〉

kBT

= 3ygκ

(5)

valid for a macroscopic spherical sample of volume V embedded in a
medium of permittivity ε′; y is the dimensionless parameter 4πβρµ2/9
(with ρ = N/V and β = 1/kBT ), while gκ = 〈|M |2〉/Nµ2 is the Kirkwood
“g-factor”, a measure of the orientational correlations between neighbour-
ing dipoles. Onsager’s celebrated result is recovered if correlations are ne-
glected, such that gκ = 1. The correct use of the Kirkwood’s formula (5)
in simulations, in conjunction with periodic boundary conditions (Ewald
summations or Reaction Field), was clarified by Neumann [12]. It is obvi-
ous from (5) that the g-factor depends on the dielectric constant ε′ around
the macroscopic sample. The ε derived from (5) can however be shown
to be independent of this boundary condition, both theoretically for an
arbitrary sample shape [13,14], as well as in simulations performed in pe-
riodic boundary conditions. Kirkwood’s formula (5) results from a simple
linear response analysis which will be generalised to the inhomogeneous
case in Sect. 3.

(b) A variant of route a is obtained by expliciting the Kirkwood “g-factor”
in terms of the projection h110(r) of the pair distribution function (3):

gκ = 1 +
∑

i�=j

〈µi · µj〉
Nµ2

= 1 +
4πρ
3

∫
h110

ε′ (r)r2dr

(6)

where h110 depends sensitively on the permittivity ε′ of the embedding
medium [6,15].

(c) The projection h112(r) is related to ε by its asymptotic limit [16] which
is independent of ε′ for sufficiently large samples:

lim
r→∞

r3h112(r) =
(ε− 1)2

ε

1
4πρy

(7)

Thus ε might also be extracted from Monte Carlo (MC) or MD data for
h112(r), provided the sample is large enough for this projection to reach
the asymptotic limit.
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(d) In the case of extended (as opposed to point) dipoles, ε may also be calcu-
lated, in principle, from the Stillinger–Lovett perfect screening condition,
valid for an ionic system [17–19].
The total charge-charge correlation function has intra and intermolecular
contributions:

S(r) = Sintra(r) + Sinter(r)

=
[

2q2ρδ(r) − 2q2ρ
δ(|r| − d)

4πd2

]

+ 2q2ρ2 [h++(r) − h−−(r)]
(8)

The second Stillinger–Lovett (or perfect screening) condition reads:

1 − ε

ε
=

2πβ
3

∫
r2S(r)dr (9)

This route is in practice of little use for highly polar systems (ε � 1), be-
cause of the unfavourable ratio (1 − ε)/ε , which would require extremely
accurate determinations of S(r).

(e) For completeness, we mention finally Ramshaw’s formula [13] which ex-
presses the dielectric constant as an integral over the direct correlation
function:

ε− 1
ε + 2

= y

[

1 − ρ

16π2

∫
dr

∫
dµ̂1

∫
dµ̂2 c(r, µ̂1, µ̂2)µ̂1 · µ̂2

]−1

(10)

where the molecular direct correlation function c is related to the molec-
ular pair correlation function h by the Ornstein–Zernike relation [2, 10]:

h(r1, µ̂1, r2, µ̂2) =c(r1, µ̂1, r2, µ̂2)

+ ρ

∫
dr3

∫
dµ̂3c(r1, µ̂1, r3, µ̂3)h(r3, µ̂3, r2, µ̂2)

(11)

Route c yields accurate values of ε, provided a sufficiently large system is
simulated for h112(r) to reach its asymptotic value. A similar requirement
holds for route b, while route a can be used with smaller systems. An error
analysis [6] shows that the choice of metallic boundary conditions at infinity
(ε′ = ∞) is optimal in the sense that it minimises the uncertainty in ε for a
given simulation time. The convergence with the number of timesteps is slow,
because ε is related to fluctuations of the total dipole moment M around its
mean 〈M〉 = 0. This is illustrated in Fig. 1 which shows that simulation times
of several nanoseconds are required to arrive at a 5% accuracy.

The “sluggishness” of the convergence may be traced back to the slow
decay of the autocorrelation function of the total dipole moment M(t). At
liquid densities, the relaxation is essentially exponential with a relaxation time
τM of typically 10 ps, an order of magnitude larger than the time associated
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Fig. 1. Convergence of ε with simulation time, for dipole elongations d∗ = d/σ = 0,
0.3, 0.4, 0.5 and 0.6.(After Ballenegger and Hansen [6])

with the single dipole relaxation, which follows a stretched exponential be-
haviour [6]. Note that τM increases with the elongation of d/σ, due to the
enhanced tendency towards alignment (string formation) of the dipoles.

Comparing results for different elongations (but the same µ) shows that
the extended dipole results begin to deviate from the point dipole data only for
d/σ � 0.3. As the ratio increases further, the dipolar molecules tend to form
head-to-tail strings, and the polar fluid undergoes a transition to a hexagonal
columnar phase [6], which occurs for much lower values of µ compared to the
point dipole case [20,21].

3 Dipolar Fluctuations in Confined Fluids

We now turn to the largely uncharted territory of the dielectric behaviour
of confined polar fluids near dielectric interfaces. The general geometry is
sketched in Fig. 2: N dipolar molecules are confined to a cavity of arbitrary
shape carved out of a medium of macroscopic dielectric permittivity ε′. Two
situations will be considered:

(a) ε′ = 1, i.e. the confining medium is non polarisable; in that case the dielec-
tric behaviour of the fluid is modified due to the geometric confinement
only.

(b) ε′ > 1, then the dielectric behaviour is affected both by geometric confine-
ment and by the polarisation of the confining medium. Polarisation effects
introduce boundary conditions at the interfaces, which can be handled
either by the method of images [22], which is useful only for very sim-
ple geometries, or by a variational method based on the optimisation of
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Fig. 2. Sketch of dipoles confined to a cavity embedded in a dielectric medium ε′

an appropriate functional with respect to the surface polarisation charge
density [23–25].

The two key questions to be asked concerning the dielectric response of a
polar fluid near a confining surface are the following:

(a) Is there a local, linear relationship between the induced mean polarisa-
tion density P (r) and the local (Maxwell) electric field E(r) of a form
generalising the standard macroscopic expression [22], i.e.:

P (r) =
ε(r) − I

4π
E(r) (12)

where ε(r) is a local permittivity tensor (which reduces to a constant
scalar in the bulk of an isotropic fluid)?

(b) If such a relation holds (at least for sufficiently weak applied field), what
is the microscopic expression for ε(r), which generalises Kirkwood’s rela-
tion (5)?

The limits of validity of the local relation (12) are discussed in references [5]
and [16]. Roughly speaking a local relation holds provided the field does not
vary appreciably over the range of the bulk pair correlation function. A general
formal expression for ε(r) was derived in [5]. Expressions for specific, simple
geometries will be given below.

The simplest geometry is a semi-infinite system confined (say to z > 0)
by a plane (z = 0) and a dielectric medium ε′ extending to negative z. Under
these conditions the dielectric permittivity tensor, if it exists, is necessarily of
the form:

ε(z) =




ε‖(z) 0 0

0 ε‖(z) 0
0 0 ε⊥(z)



 (13)
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Exact expressions for ε‖(z) and ε⊥(z) in the asymptotic region close to the
bulk limit may be derived and exhibit a 1/z3 variation [5]; the same is true
of the anisotropic one-particle density ρ(z, θ) (where θ is the angle between a
dipole and the z axis) [26]. Direct simulation of such a semi-infinite polar fluid
is not possible, because periodic boundary conditions cannot be satisfied in the
z-direction. Periodicity can only be achieved for a slab of polar fluid confined
between two dielectric slabs, which may mimic, for instance, membranes or
clay platelets.

As in the case of bulk polar fluids, the general procedure to derive a mi-
croscopic expression for the local permittivity ε(r) of a confined fluid is based
on a linear response argument [1, 7, 27]. This proceeds in two steps: first the
induced polarisation of the sample is related to the cavity field Ec, i.e. the
field created inside the empty cavity by an external field E′. The second step
is to relate the Maxwell field inside the filled cavity to the cavity field; ε(r)
then follows from the definition (12). The first step may be formally carried
out for a cavity of arbitrary shape. Let m(r) be the microscopic polarisation
density:

m(r) =
N∑

i=1

µiδ(r − ri) (14)

where ri and µi are the centre of mass position and dipole moment of the ith
molecule (1 ≤ i ≤ N). The total dipole moment of the sample is:

M =
∫

cavity

m(r)dr (15)

The mean local polarisation density is the statistical average of (14). Let E′

be a uniform externally applied field in the confining dielectric, far from the
cavity. The induced polarisation density is:

∆P (r) = P (r) − P 0(r)
= 〈m(r)〉E′ − 〈m(r)〉

(16)

where the two terms are the polarisations in the presence and absence (P 0(r))
of external field. In many situations symmetry implies that P 0(r) = 0. The
general relation between ∆P and the corresponding difference in Maxwell
fields ∆E(r) = E(r) − E0(r) is:

∆P (r) =
1
4π

∫

cavity

χ(r, r′) · ∆E(r′)dr′ (17)

which reduces to (12) if a local relation χ(r, r′) = χ(r)δ(r − r′) = (ε(r) −
I)δ(r − r′) holds and if E0(r) = 0 by symmetry. Expliciting the statistical
average 〈m(r)〉E′ in (16) we arrive at:
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∆P (r) =
∫

[m(r) − 〈m(r)〉] exp {−β [Uε′(1, . . . , N) − M · Ec]}d1 . . . dN
∫

exp {−β [Uε′(1, . . . , N) − M · Ec]}d1 . . . dN
(18)

where di = dridµ̂i, Uε′ is the total interaction energy of N dipolar molecules
within the cavity embedded in the dielectric ε′, while the total dipole moment
is coupled to the cavity (rather than the external) field.

Linearisation of the Boltzmann factors with respect to Ec immediately
leads to the linear response result:

∆P α(r) = β
∑

γ=x,y,z

[〈mα(r)Mγ〉 − 〈mα(r)〉〈Mγ〉]Eγ (19)

where the statistical averages are to be taken over the unperturbed system
(i.e. for E′ = 0).

The next task is to relate Ec to E; this depends on the geometry of the
cavity and the permittivity ε′. In Sect. 4 we consider the slab geometry, while
the case of a spherical cavity will be examined in Sects. 5 and 6.

4 Slab Geometry

The “cavity” reduces to an infinite slab in the x and y directions, confined
between two semi-infinite dielectric media ε′. The interfaces are planes orthog-
onal to z. The local dielectric tensor is of the form (13). By symmetry, the
component of P parallel to the planes vanishes in the absence of an external
field, so that (12) splits into:

P ‖(z) =
ε‖(z) − 1

4π
E‖(z) (20a)

P⊥(z) =
ε⊥(z) − 1

4π
E⊥(z) (20b)

where all vectors with the subscript ‖ are 2d vectors in the x-y plane.
The standard electrostatic boundary conditions relate the cavity to the

external field, i.e.:

Ec
‖ = E′

‖

Ec
⊥ = ε′E′

⊥
(21)

Maxwell’s equation ∇ ∧ E(z) = 0 shows that E‖ is independent of z and
hence E‖ = E′

‖ everywhere. Remembering (20a), we conclude that:

P ‖(z) =
ε‖(z) − 1

4π
Ec

‖ (22)

Equations (19) and (22), together with the isotropy in the x-y plane then
imply the following generalised Kirkwood relation for ε‖(z):
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ε‖(z) = 1 + 2πβ
[
〈m‖(z) · M‖〉 − 〈m‖(z)〉 · 〈M‖〉

]
(23)

Note that the dipolar density at z must be correlated not with itself (as one
might naively have guessed) but with the total dipole moment of the slab.

A similar calculation, now using the Maxwell relation ∇ · D(z) = 0 (with
D = E + 4πP ), leads to the following expression for ε⊥(z) [7]:

ε⊥(z) − 1
ε⊥(z)

= 1 + 2πβ [〈m⊥(z)M⊥〉 − 〈m⊥(z)〉〈M⊥〉] (24)

One immediately notes that the unfavourable ratio on the left hand side will
make it very difficult to extract accurate values of ε⊥(z) from simulation
estimates of the fluctuations on the right hand side.

A first attempt to extract ε‖(z) and ε⊥(z) from MD simulations was
made in [7], for a system of “soft spheres” (short-range pair interactions
v(r) = 4u(σ/r)12) with extended dipoles (d/σ = 1/3), confined to a slab of
width L, surrounded on both sides by vacuum (ε′ = 1). The electrostatic
interaction of a periodic array of such slabs can be handled by 3d Ewald sum-
mations with a dipole layer correction term [28–30]. ε‖(z) and ε⊥(z) can be
computed from the fluctuation formulae (23) and (24), or by applying a uni-
form external field E′ parallel (for ε‖) or perpendicular (for ε⊥) to the slab.
In the parallel case a measurement of P ‖(z) then directly determines ε‖(z)
via (22), since Ec

‖ = E′
‖. ε⊥(z) may also be estimated in a similar way [7]. Re-

sults for ε‖(z) and two different dipole moments are plotted in Fig 3. The two

Fig. 3. Parallel component of the permittivity tensor from fluctuation formula (23)
and from the response to an external field E′ = 0.1 V/nm along the x axis. (Reused
with permission from [7]. Copyright 2005, American Institute of Physics)
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estimates of ε‖(z) based on (22) and (23) are in excellent agreement. The pro-
nounced oscillations of ε‖(z) near the two interfaces are intimately correlated
with the oscillations in the density profile ρ(z), which reflect the layering of
the dipolar spheres near the walls, as is clear form the plots of ε‖(z)ρbulk/ρ(z),
where ρbulk is the bulk density of the fluid, reached half-way between the two
plates where ε(z) tends to its bulk value. The behaviour of the “envelope”
ε‖(z)ρbulk/ρ(z) near the interfaces suggests that on a suitably coarse-grained
scale, ε(z) tends to increase over its bulk value on approaching the dielectric
walls. This behaviour may change qualitatively when the dielectric media on
both sides of the slab are polarisable (ε′ > 1) or carry a surface charge; these
issues will be addressed in future simulation work.

As anticipated, ε⊥(z) fails to converge to physically acceptable values, even
for very long (several ns) MD runs, except in the bulk region, far from the
interfaces, where it tends to the same limit as ε‖(z).

An unexpected result of the simulations in [7] is the dramatic “overscreen-
ing” of an externally applied field by the local polarisation density in the
immediate vicinity of the interfaces, where the ratio E(z)/E′ can become
very large and negative (typically � −2).

The general behaviour described in this section is not specific to dipolar
soft spheres, but remains at least qualitatively very similar for SPC/E water
confined to a slit [7].

5 Spherical Geometry

We next consider a dipolar fluid confined to a spherical cavity of radius R
carved out of a dielectric medium ε′. The cavity field is now Ec = 3ε′E′/(2ε′+1)
[22], and adaptation of the linear response argument of Sect. 3 to this isotropic
case leads to

(ε− 1)(2ε′ + 1)
2ε′ + ε

=
4πβ
3V

[〈m(r) · M〉 − 〈m(r)〉 · 〈M〉] (25)

where r can be any point in the bulk of the system, except in the vicinity of
the spherical interface. Away from the interface, m(r) may hence be replaced
by M/V so that (25) leads back to Kirkwood’s formula (5) (with 〈M〉 = 0,
which in simulations is only achieved for sufficiently long runs).

We now consider the case of a radial, external field due to an “external”
charge q placed at the centre of the cavity filled with polar molecules, so
that E′(r) = qr̂/r2. In that case the permittivity depends only on the ra-
dial distance from the centre, and the linear response argument leads to the
microscopic expression [7]:

ε(r) − 1
ε(r)

= 4πβ
∫

cavity

〈m(r)m(r′)〉
( r

r′

)2

dr′ (26)
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Fig. 4. Radial electric field, polarisation density, molecular density, and permittivity
profiles for a spherical droplet of polar fluid (µ∗ = 2, T ∗ = 1.35, ρ∗ = 0.2) when an
ion of unit electronic charge (reduced charge q∗ = 28.7) is present at the origin. The
dotted line indicates the bulk dielectric constant ε = 6.3 (divided by 10). (Reused
with permission from [7]. Copyright 2005, American Institute of Physics)

where m = m · r̂ is the radial projection of the microscopic polarisation den-
sity (14). Note that, contrary to (25), this relation does not depend explicitly
on ε′ (but of course implicitly through the Boltzmann weight in the statistical
average).

Equation (26) is not very convenient for computational purposes, because
of the integration on the right hand side. The local and applied fields are
related by the intuitively satisfactory relation [7]

E(r) =
E′(r)
ε(r)

(27)

which is a direct consequence of the local assumption (12). The profile
E(r) = q(r)/r2, where q(r) = q − 4πr2P (r) is the charge inside a sphere of
radius r and P (r) is the radial component of the polarisation density, which
may be measured via definition (16) (with P0 = 0 for linear dipoles). Examples
of the various profiles, when an ion of charge q∗ = qµ/(σ2u) = 28.7 is placed
at the origin, are shown in Fig. 4 in the case where ε′ = 1. The resulting ε(r) is
compatible with the bulk value away from the centre and the interface, but is
ill-defined as the latter are approached. Note that the “overscreening” effect,
observed in the slab geometry, is also very marked near the central charge.
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6 Polarisation Effects

So far we have carefully avoided the complications due to the polarisation
charge induced on the confining surfaces by the dipoles of the confined polar
fluid, by assuming ε′ = 1 in all simulations. For ε′ > 1 electrostatic boundary
conditions must be satisfied at the surface separating the confining medium
from the atomistically resolved polar fluid, where molecules evolve in vacuo
(ε = 1). Let n be the normal to the surface carrying a surface charge density
σ (only the case σ = 0 will be considered throughout). The electric fields E′

and E on either side of the surface obey the conditions [22]

(ε′E′ − εE) · n = 4πσ (28a)
(E′ − E) ∧ n = 0 (28b)

For sufficiently simple geometries, the solution to Maxwell’s equations ∇ ∧E =
0 and ∇ · (εE) = 0, subject to the boundary conditions (28) may be conve-
niently obtained by the introduction of image charges. In the simplest case
of a single planar surface separating the two media as depicted in Fig. 5,
the electrostatic potential Φ(r) inside the medium ε due to a single charge
q is the sum of the potentials due to that charge and a single image charge
q′ = (ε− ε′)q/(ε + ε′), positioned at the mirror location with respect to the
planar surface, in the absence of the dielectric discontinuity. In the case of the
slab geometry used in simulations, an infinite array of images is required to
satisfy the boundary conditions. In the case of a spherical cavity the problem
turns out to be highly non-trivial [8], except in the case where the confining
medium is a metal (ε′ = ∞) [22]. Referring to Fig. 6, the electrostatic potential
at r due to a simple charge q placed at d is [8]:

Φ(r) =
q

4πε

{
1

|r − d| + (1 − 2κ)
R/d

|r − D|

}

+
q(1 − 2κ)

4πε′R
F1

(

κ,
1
2
,
1
2
, 1 + κ;xeiθ, xe−iθ

) (29)

d d

ε

qq’

ε’
r

n

Fig. 5. The electrical potential field at r due to a single charge q in the case of
a planar interface separating the media ε and ε′, is effectively described by the
combined contributions of the charge q and its image q′
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D
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ε

R

ε’
d

r

Fig. 6. Schematic representation of a charge at position d inside a spherical cavity
of radius R and permittivity ε embedded in an infinite medium ε′

Fig. 7. Time correlation function 〈M (0) · M (t)〉 of the total dipole moment of a
polar fluid inside a spherical cavity surrounded by a dielectric medium with ε′ = 1,
4, 9, and ∞ (N = 1000, R = 3 nm)

where F1 is a hyper-geometric function in the two complex variables xeiθ and
xe−iθ, with x = rd/R2, κ = ε′/(ε + ε′), and D = (R/d)2d. The classic result
for a cavity inside a metal is recovered when ε → ∞ or κ → 1.

The dielectric behaviour of a polar fluid trapped inside a spherical cavity
is very sensitive to the dielectric permittivity ε′ of the confining medium.
This is illustrated in Fig. 7, which shows the correlation function of the total
dipole moment M(t) of N = 1000 dipolar molecules with µ∗ = 2 trapped
inside a cavity of radius R = 3 nm. The oscillatory relaxation observed for
ε′ = 1 (vacuum) is seen to go over into a very slow relaxation when ε′ = ∞.
The slowing down of the relaxation as ε′ increases agrees with the increase
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Fig. 8. Dielectric profiles ε(r) inside a spherical cavity, with a radius of 4 nm and
1000 dipoles, surrounded by a dielectric medium with ε′ = 1, 4, and ∞ obtained by
the fluctuation formula (25) (open symbols) and (non-) linear response (27) (filled
symbols)

of the Debye relaxation time in bulk dielectrics, predicted by Neumann and
Steinhauser [31]. Permittivity profiles, ε(r), as estimated, for three values of
ε′, from the fluctuation formula (25), and from the (non-linear) response to
a central charge (27) are shown in Fig. 8. In the case ε′ = 1, the linear and
non-linear responses are seen to be rather close. For ε′ = 4 and ε′ = ∞, the
linear profiles are significantly lower than their ε′ = 1 counterpart, while the
non-linear response profiles appear to be less sensitive to the value of ε′.

7 Summary and Outlook

The main message to be taken away from this chapter is that a microscopic
computation of the dielectric response of a polar fluid, and in particular of the
dielectric permittivity in the bulk and at interfaces, is still an arduous and
non-trivial task, despite several decades of efforts due to the following points:

(a) The dielectric behaviour of fluids of molecules with extended dipoles
closely matches that of point dipoles for extensions d/σ � 0.3. Dramatic
differences appear for d/σ � 0.5, due to a stronger tendency towards head-
to-tail string formation.

(b) Kirkwood’s fluctuation formula (5) remains the most efficient route to es-
timating the bulk permittivity ε by computer simulations, with “metallic”
boundary conditions (ε′ = ∞) at infinity. It must be emphasised, however,
that MD trajectories of at least a few ns are required to achieve an ac-
curacy of the order of 5%. Alternative estimates based on the asymptotic
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behaviour of partial correlation functions require larger system sizes and
tend to be less accurate.

(c) Assuming a local relation between polarisation and electric field profiles,
one can derive generalised fluctuation formulae for the components of a
local permittivity tensor ε(r). These formulae depend on the geometry
of the problem, i.e. on the shape of the confining surface(s), and on the
dielectric permittivity ε′ of the confining medium, which is treated as a
dielectric continuum. Whenever this medium is polarisable (ε′ > 1), the
dielectric boundary conditions at the confining surface must be accounted
for by the method of images (which is tractable for the simplest geometries
only), or by a recently developed variational procedure for the calculations
of the surface polarisation charge density.

We have shown that in the slab geometry the longitudinal permittivity ε‖(z)
appears to be well defined, and strongly influenced by the layering of densely
packed polar molecules near the wall. The transverse component ε⊥(z) is,
however, ill-defined and may take on unphysical (negative) values near the
walls, thus pointing to the break-down of the assumption of locality.

Preliminary MD data for a polar fluid inside a spherical cavity point to a
significant dependence of the dielectric response of the sample to the permit-
tivity ε′ of the confining medium. Although spatially varying local permittiv-
ities are being used in implicit solvent simulation of biomolecular assemblies,
the conclusion to be drawn from the preliminary results presented in this
chapter is that the use of such permittivity profiles on nanoscales is dubious
for the least. Moreover the simultaneous use of a fully molecular description
of the confined polar fluid, and of a continuum representation of the confining
medium (e.g. solid substrates, colloids or membranes) is obviously inconsis-
tent, and introduces artificially sharp dielectric discontinuities at the surfaces.
A more satisfactory, but also more computer-intensive model of polar fluids
at interfaces would be to use an atomistic representation of the confining
medium. We are presently replacing continuous dielectric slabs by polarisable
atoms on a lattice. The polarisation of substrate atoms by the charge distri-
bution on the molecules of the polar fluid can be handed by well established,
self-consistent methods [32]. The dielectric discontinuity is thus smoothed out
over atomistic scales, and a comparison will be made between the dielectric
response of a polar fluid near a continuous or atomically resolved substrate.
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