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Within the Feynman–Kac path integral representation, the equilibrium quanti-
ties of a quantum plasma can be represented by Mayer graphs. The well known
Coulomb divergencies that appear in these series are eliminated by partial
resummations. In this paper, we propose a resummation scheme based on the
introduction of a single effective potential f that is the quantum analog of the
Debye potential. A low density analysis of f shows that it reduces, at short dis-
tances, to the bare Coulomb interaction between the charges (which is able to
lead to bound states). At scale of the order of the Debye screening length o−1D ,
f approaches the classical Debye potential and, at large distances, it decays as a
dipolar potential (this large distance behaviour is due to the quantum nature of
the particles). The prototype graphs that result from the resummation obey the
same diagrammatical rules as the classical graphs of the Abe–Meeron series. We
give several applications that show the usefulness of f to account for Coulombic
effects at all distances in a coherent way.
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1. INTRODUCTION

A non relativistic quantum plasma in thermal equilibrium shows a variety
of phenomena, atomic and molecular recombination, ionization, collective
screening, all of them originating from the basic Coulomb potential
between point charges. A clear distinction and classification of these effects
is only possible at low density, but even in this regime, it is a non elemen-
tary task to describe all consequences stemming from the sole Coulomb
potential in a coherent way.



The formalism of quantum Mayer graphs is particularly well suited to
this program. Quantum Mayer graphs arise when the Gibbs statistical
weight is expressed in terms of the Feynman–Kac path integral and is
suitably reorganized to take into account the quantum statistics. According
to this description, the quantum Coulomb gas is mapped into a certain
classical-like gas of charged loops that carry fluctuating multipoles. (1) Then,
the familiar Mayer expansion methods can be applied to this classical gas
of loops. The resulting Mayer graphs are defined within the usual classical
rules. All the quantum mechanical aspects are embodied into a generalized
definition of phase space and of the corresponding Mayer bonds and
weights at vertices.

This quantum Mayer diagrammatic is well suited for the low density
regime since the small parameter is the activity or the density, and not the
coupling constant (the electric charge). This is to be contrasted with the
standard Feynman perturbation theory of the many-body problem (see,
e.g., ref. 2) that has been applied to the high-temperature regime, (3, 4) and
also to the high-density limit at zero temperature. (5) In both cases, the
Coulomb interactions can indeed be treated as small perturbations. At
finite temperature, non-perturbative effects are essential. In this regime, the
effective-potential method (6) can be used. This first principles approach
amounts to introduce an equivalent classical system of point particles with
many-body potentials that incorporate all quantum effects. It has been
applied to the calculation of low-density expansions up to order r2. (7, 8)

However, general properties of this expansion remain quite hard to derive
in this framework. Indeed, if only two-body potentials intervene at order r2,
many-body potentials appear at higher orders, the effects of which cannot
be accounted for within simple diagrammatical techniques. The present
formalism based on loops Mayer graphs, avoids this drawback. It proves
to be particularly efficient in dealing simultaneously with the collective
screening effects and the quantum mechanics of small clusters of charges.
Various applications have already been presented: derivation of the equation
of state of a multicomponent plasma up to order r5/2 in the density, (9, 10)

characterization of the asymptotic behaviour of the particle and charge
correlations, (12, 13) magnetized plasma. (14)

In all cases the central point is to build, by partial resummations, an
integrable effective screened potential (in the same way as the classical
Debye–Hückel potential arises from the chain graphs summation) that has
a shorter range than the bare Coulomb potential. In quantum mechanics,
there are several ways to define such an effective potential, depending on
whether it includes or not multipolar interactions and quantum statistics.
A proper choice of the effective potential may be dictated by the physical
situation at hand and the convenience of the calculation, and several
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possibilities have been considered in the above mentioned works. In this
paper, we establish the properties of the most compact form of the effective
potential, including multipolar interactions and quantum statistics.

In Section 2, we recall the basic rules for quantum Mayer graphs, as
formulated in ref. 15. The effective potential f is defined in Section 3; it is
calculated with the help of a very useful lemma on Brownian bridge integrals.

Section 4 is devoted to a low density analysis of f. At short distances,
f behaves as the bare Coulomb potential: this is the part that will control
the quantum mechanical binding. At distances of the order of the classical
Debye screening length, its behaviour is similar to the usual exponentially
decaying Debye–Hückel potential induced by collective screening effects.
At still larger distances, the effective potential displays an algebraic decay
typical for unscreened multipolar interactions. These interactions are asso-
ciated to the intrinsic quantum fluctuations of the charges. The dominant
term in the algebraic tail of f is related to a dipolar potential, and it is
responsible for the non exponential decay of equilibrium particle and
charge correlation functions.

In Section 5, we recall the diagrammatic rules for the so-called proto-
type graphs that arise when the Coulomb potential is replaced by the
effective potential. The rules are simple: they involve only two bonds and
are identical to those occuring in the Abe–Meeron series for the classi-
cal plasma. (16, 17) We consider resummations both in activity and density
expansions and make the link between our resummed series and that
introduced in earlier works. In this formalism (as well as in ref. 12 and
subsequent papers) the value of a graph results of unbounded summations
on particle numbers (since the number of particles in a loop in not fixed).
Regarding the finiteness of a prototype graph, one can assert that spatial
integrations are convergent because of the introduction of the screened
potential, but convergence of infinite sums on particle numbers cannot be
guaranteed in general (see discussion in Section 5.4). A prototype graph
must hence be understood as a convenient compact notation for the set of
all graphs with the same structure but different particle numbers in the
loops (all graphs with a given number of particles are finite).

In the last section, we present several applications of the formalism
that illustrate the crucial role of f for a coherent description of all
Coulombic phenomena. First, we revisit the derivation of various sum rules
in the quantum plasma. With the prototype graphs introduced in this
paper, the quantum sum rules are formally proved as the classical ones:
they are direct consequences of the screening embodied in the effective
potential f. We also argue that the dipolar sum rule for two fixed particles
of different species should not hold because of the quantum fluctuations
that are properly accounted for by f. Eventually, we propose a simple
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approximation for the particle correlations by retaining the first graphs in
the diagrammatic series. This approximate form does satisfy the charge
sum rule, and it does incorporate all the physical mechanisms that control
short and large distance behaviours.

2. QUANTUM MAYER GRAPHS

We consider S species of point quantum charges ea with masses ma
and spin sa, a=1,...,S, obeying Fermi or Bose statistics (with at least one
fermionic species). The charges interact by the Coulomb potential eaeaŒV(r)=
eaeaŒ/|r|. In the grand canonical ensemble, each type of charge has a che-
mical potential ma or fugacity za=exp[bma] with b the inverse tempera-
ture. Quantum Mayer graphs arise when the Gibbs statistical weight is
expressed in terms of the Feynman–Kac path integral in which quantum
fluctuations are represented by Brownian trajectories. The open trajectories
associated to exchange contributions are reorganized into larger closed
‘‘loops’’ containing several particles. The result is that the grand partition
function of the quantum gas can still be written in a classical-like form as
(the so-called magic formula)

XL=C
.

n=0

1
n!

F D
n

i=1
dLi z(Li) exp(−bU(L1,...,Ln)) (1)

if a suitable definition of the phase space integration and of the interaction
are introduced. This formula has been derived and applied to the Coulomb
system by Cornu in ref. 12. Here we follow the notations and definitions
given in the review of ref. 15. An element L of phase space, called a loop,

L=(R, a, q, X(s), 0 [ s [ q)=(R, q) (2)

is specified by its position R in space, the particle species a, the number of
particles q in the loop, and its shape X(s). The q particles that belong to the
loop are located at positions

r (k)=R+laX(k−1), k=1,..., q (3)

where

la=( =
b

ma
(4)

is the de Broglie thermal wavelength of the particle of type a. The path
R+laX(k−1+s), s ¥ [0, 1], is the trajectory of the kth particle. It is
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constrained to stay inside the volume L of the system, but we do not write
this constraint explicitly since it will be trivially removed in the infinite
volume limit LQ.. The collective variable

q=(a, q, X( · )) (5)

denotes all the internal parameters that describe the constitution of the
loop. The loop can be viewed as an extended object at R that has internal
degree of freedom q.

The shape of the loop X(s) is a Brownian bridge (a closed Brownian
path), parametrized by the ‘‘time’’ s running in the ‘‘time interval’’ [0, q]
with X(0)=X(q)=0. It is distributed according to the normalized
Gaussian measure D(X), with covariance

F D(X) Xm(s1) Xn(s2)=dm, nq 5min 1 s1
q
,
s2
q
2−s1
q
s2
q
6 (6)

The path X(s) is extended for convenience to a q-periodic function for all s.
Integration on phase space means integration over space and summation
over all internal degrees of freedom of the loop

F dL · · ·=F dR C
S

a=1
C
.

q=1
F D(X) · · ·=F dR F dq · · · (7)

The interaction energy of n loops is the sum of two-loop potentials

U(L1,...,Ln)= C
n

1=i < j
eaieajV(Li,Lj) (8)

with the potential between two different loops

V(Li,Lj)=F
q1

0
ds1 F

q2

0
ds2 d̃(s1−s2) V(Ri+laiXi(s1)−Rj−lajXj(s2)) (9)

In (9),

d̃(s)= C
.

n=−.
e2ipns (10)

is the Dirac comb (d̃(s1−s2) does not vanish only for (s1−s2) integer). The
‘‘equal time’’ condition d̃(s1−s2) naturally appears in the Feynman–Kac
path integral; it can be seen as the manifestation of the quantum nature of
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the particles. When it is omitted, (9) becomes identical to the pure electro-
static potential between two charged wires of shapes X1(s) and X2(s):

Velec(Li,Lj)=F
q1

0
ds1 F

q2

0
ds2 V(R1+la1X1(s1)−R2−la2X2(s2)) (11)

To make the spatial dependence explicit, we also write

V(Li,Lj)=V(Rij, qi, qj), Rij=Ri−Rj (12)

In (1), the activity z(L)=z(q) of a loop

z(L)=(2sa+1)
(ga)q−1

q
zqa

(2pql2a)
3/2 exp(−bU(L)), za=ebma (13)

incorporates the effects of quantum statistics (ga=1 for bosons and ga=
−1 for fermions), the spin degeneracy as well as the internal interaction
U(L)=U(q) of the particles in the same loop with

U(L)=
e2a
2

F
q

0
ds1 F

q

o
ds2(1−d[s1], [s2]) d̃(s1−s2) V(la(X(s1)−X(s2))) (14)

Here [s]= integer part of s and the term with the Kronecker symbol
d[s1], [s2] substracts out the self-energies of the particles. Notice that z(q)
may take negative values for fermions, but since all the interactions
between the particles that belong to the same loop are repulsive, one has
the bound

|z(q)| [
(2sa+1)
q

zqa
(2pql2a)

3/2 (15)

The above rules define the statistical mechanics of the system of charged
loops. Notice that loops with arbitrary shapes carry multipoles of all
orders, and all possible shapes are randomly distributed. Because of the
structure of the partition function (1) and of the interaction energy (8), the
classical technique of Mayer expansions clearly applies to this system. The
bonds are

f(Li,Lj)=exp(−beaieajV(Li,Lj))−1 (16)

the weights at vertices are z(Li), and the integration upon the vertices
variables Li have to be performed according to (7). For instance, the loop
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density r(L) is represented by the activity expansion (see for example
ref. 18)

r(L)=C
G

1
SG

F D
N

n=1
dLn z(Ln) 5D f6

G
(17)

where the sum runs over all unlabeled topologically different connected
diagrams G with one root point L and N=0, 1,... internal points (by
convention, the term N=0 is z(L)). The symmetry factor SG is the
number of permutations of the internal points Ln that leave the integrand
invariant.

At large distance (namely |R1−R2 |± la1 and la2 ), the interaction (9)
behaves as the Coulomb potential between two point charges q1ea1 and
q2ea2

ea1ea2V(L1,L2) ’
q1ea1q2ea2
|R1−R2 |

(18)

so that the bonds f(Li,Lj) are not integrable and resummations are
needed.

3. THE EFFECTIVE POTENTIAL f

3.1. Definition and Formal Calculation of f

We consider the linear part

fC(Li,Lj)=−bijV(Li,Lj) —n–––n (19)

of the bond (16) with the abbreviation bij=beaieaj . Similarly to what Abe
and Meeron did for classical particles, we define the effective potential
f(La,Lb) between two loops La and Lb as the sum of all the chain graphs
with the linearized bond (19):

−babf(La,Lb) —n–––n+n–––N–––n+n–––N–––N–––n+·· · (20)

This definition of f(La,Lb) differs from the one used in previous works by
the fact that it includes both quantum statistics and multipolar interactions.
In ref. 19, f(La,Lb) is calculated in the Maxwell–Boltzmann approxima-
tion, retaining only loops with q=1. In ref. 12 (and subsequent works),
a multipolar decomposition of the loop interaction is performed, and only
chains of monopolar interactions are summed. In spite of its complexity,
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the summation on chain graphs (20) can be performed in a translation
invariant system.

We decompose f(La,Lb) into

f(La,Lb)=V(La,Lb)+fch(La,Lb) (21)

with −babfch(La,Lb) the sum of all chains having at least an intermediate
black point. According to the rules of Section 2, the Nth order term of
fch(La,Lb) (with N black points and N+1 bonds) is

f (N)ch (Rab, qa, qb)

=(−b)N F dL1 · · ·dLN z(L1) · · · z(LN)

×ea1V(Ra1, qa, q1) ea1ea2V(R12, q1, q2) ea2 ...eaNV(RNb, qN, qb) (22)

We introduce the Fourier transform of the loop potential

Ṽ(k, q1, q2)=F dR e−ik ·RV(R, q1, q2) (23)

=Ṽ(k) F
q1

0
ds1 F

q2

0
ds2 d̃(s1−s2) e ik · [la1X1(s1)−la2X2(s2)] (24)

and this is further decomposed with the help of (10) into

Ṽ(k, q1, q2)=Ṽ(k) C
.

n=−.
cn(k, q1) c

g
n (k, q2) (25)

where Ṽ(k)=4p/|k|2 and

cn(k, q) — F
q

0
ds e2ipnse ik ·laX(s) (26)

Hence, using the invariance of z(L)=z(q) under translations, the convo-
lution theorem gives for the Nth order term, in the Fourier representation,

f̃(N)ch (k, qa, qb)=−(−Ṽ(k))
N+1

× C
n1,..., nN+1

gn1n2 (k) gn2n3 (k) · · · gnNnN+1 (k) cn1 (k, qa) c
g
nN+1
(k, qb)

(27)
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where

gn1n2 (k) — b F dq e2az(q) c
g
n1
(k, q) cn2 (k, q) (28)

includes the integration on the internal variables of the loop at a black
point. The integral (28) is simplified by the application of the following
lemma on a change of variable in a Brownian integral.

Lemma 1. For any u ¥ R, the Gaussian measure D(X) is invariant
under

X(s)Q X(s+u)−X(u) (29)

Hence for any functional G(X( · )), one has

F D(X) G(X( · ))=F D(X) G(X( ·+u)−X(u)) (30)

The proof proceeds by an explicit verification that the covariance (6) is
left invariant under (29) (see ref. 20, Lemma 2).

We recall that the path X(s) is extended to a q-periodic function for all
s ¥ R. If we replace the factor (1−d[s1], [s2]) in (14) by the periodic expres-
sion (1−d[s1 mod q], [s2mod q]), the invariance of U(q) and z(q) under the trans-
formation (29) is obvious, since the integrand in (14) is q-periodic in both
s1 and s2. The part of (28) that involves the Brownian integral reduces
therefore to, according to (26),

F
q

0
ds1 F

q

0
ds2 F D(X) z(q) e−ik ·la[X(s1)−X(s2)]e−2ipn1s1e2ipn2s2

=F
q

0
ds1 F

q

0
ds2 F D(X) z(q) e ik ·laX(s2 −s1)e−2ipn1s1e2ipn2s2

=q dn1, n2 F
q

0
ds F D(X) z(q) e ik ·laX(s)e2ipn2s (31)

The second line results of the application of (30) with u=−s1. Hence
gn1n2 (k) is diagonal in the frequency indices, and we can write

gn1n2 (k)=
1
4p
dn1, n2o

2(k, n1) (32)
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with

o2(k, n) — 4pb C
a

e2a C
q
q F

q

0
ds F D(X) z(q) e ik ·laX(s)e2ipns (33)

Thus N frequency summations in (27) are readily performed

f (N)ch (k, qa, qb)=F
qa

0
dsa F

qb

0
dsb e ik · [laXa(sa)−lbXb(sb)]

× C
.

n=−.

4p
k2
1 −o

2(k, n)
k2
2N e2ipn(sa −sb) (34)

Summing (34) on N \ 1 leads eventually to the expression of the chain
potential:

f̃ch(k, qa, qb)=F
qa

0
dsa F

qb

0
dsb e ik · [laXa(sa)−lbXb(sb)]

× C
.

n=−.

−4po2(k, n)
k2[k2+o2(k, n)]

e2ipn(sa −sb) (35)

The effective potential is obtained by adding Ṽ(k, qa, qb) to (35). Thus,
according to (24),

f̃(k, qa, qb)=F
qa

0
dsa F

qb

0
dsb e ik · [laXa(sa)−lbXb(sb)]

× C
.

n=−.

4p
k2+o2(k, n)

e2ipn(sa −sb) (36)

The expression (36) is our main formula and generalizes the effective
potential of ref. 19 to any quantum statistics. We establish in the next
section the convergence of the sum over n and show that f is a smooth
function of its arguments.

We note that, if the sum of chains (20) is calculated with the classical
electrostatic interaction (11) instead of the loop interaction (9), the result
for the effective potential is just the term n=0 of (36). This part fn=0

decays faster than any inverse power of r (see Section 3.2), as it is expected
for a classical Coulomb gas. The part fn ] 0 associated to the non-zero fre-
quency terms in (36) embody purely quantum effects that arise from the
difference between the loop interaction (9) and the electrostatic interac-
tion (11).

178 Ballenegger et al.



3.2. Finiteness and Regularity of f

In order to show that f̃(k, qa, qb) is a well defined continuous function
at low density (for k ] 0), we start by studying the ‘‘screening coefficients’’
o2(k, n). Using (31), they are given by

o2(k, n)=4pb C
a

e2a C
q
F D(X) z(q) : F q

0
ds e ik ·laX(s)e2ipns :

2

(37)

When za is less than one, the series is convergent. Indeed, using the bound
(15) and |>q0 ds exp[ik ·laX(s)] exp[2ipns]| [ q,

|o2(k, n)| [ 4pb C
a

e2a
(2sa+1)
(2pl2a)

3/2 C
.

q=1

zqa
`q
<., za < 1 (38)

for all k and n. The term q=1 in the above sum is nothing but the inverse
of the square of the classical screening length lD:

o2D=4pb C
a

e2a
(2sa+1) za
(2pl2a)

3/2 =l
−2
D (39)

We deduce hence from (38) the uniform estimate

|o2(k, n)| [ o2D[1+O(z)] (40)

where z=supa za. In the special case k=0 and n=0, we have moreover
the equality

o2(0, 0)=o2D[1+O(z)] (41)

The notation o2(k, n) as squares is justified by the properties

o2(k, 0) > 0, k \ 0 (42)

and

o2(k, n) > 0, k > 0, n ] 0 (43)

if z is sufficiently small (notice that o2(0, n)=0, n ] 0). This positivity
property is not trivial since for fermions z(q) may be negative if q is greater
than one (in the Maxwell–Boltzmann approximation, only loops with q=1
are retained and o2MB(k, n) is manifestly positive). For a bosonic species,
the terms in (37) are clearly positive, so it is sufficient to consider a fer-
mionic species a. The idea is to single out the term q=1 in (37) and show
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that it dominates all the others at low density. For a one particle loop,
z(q) reduces to (2sa+1) za(2pl

2
a)
−3/2; for a q-particle loop, q \ 2, z(q) \

−(2sa+1) q−1z
q
a(2pql

2
a)
−3/2 by (15). Hence the q-sum in (37) for a fer-

mionic species a is minorized by

(2sa+1)
(2pl2a)

3/2
5zau1(k, n)− C

.

q=2

zqa
`q
uq(k, n)6 (44)

with

uq(k, n)=F
1

0
ds e2ipnqse−

1
2
k2l2aqs(1−s) \ 0 (45)

The quantity (45) results of the calculation of the functional integral

F D(X) : F q
0

ds e ik ·laX(s)e2ipns :
2

=q F
q

0
ds e2ipns F D(X) e ik ·laX(s)

=q2uq(k, n) (46)

where we have used that D(X) is a Gaussian measure with the covari-
ance (6), and changed s into qs in the time integral. One has clearly
uq(k, 0) [ u1(k, 0), so that (44) is positive if n=0 for za sufficiently small.
This proves (42). For n ] 0, we show in appendix A that there exists a
positive constant C such that for all q=1, 2,...,

uq(k, n) [ C q3/2 u1(k, n), n ] 0 (47)

For za sufficiently small, (44) is therefore also positive for n ] 0 (if k > 0)
and (43) is proved.

In the chain potential (35), the sum over n is absolutely convergent.
Indeed, using the positivity of o2(k, n) at low density and (10), it is
sufficient to find an upper bound for

C
n
o2(k, n)=4pb F dq e2az(q) q F

q

0
ds e ik ·laX(s) d̃(s) (48)

Using (15) and |;q
m=1 exp[ik ·laX(m−1)]| [ q, we recover the convergent

series (38), from which we deduce the upper bound

C
n
o2(k, n) [ o2D[1+O(z)] (49)

The sum over n therefore converges and the effective potential f=V+fch
is hence a well defined continuous function of k for k ] 0 at low density.
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We mention another proof of the convergence of ;n o
2(k, n), which is

based on a bound for the decay of o2(k, n) for large n. From (37), (15) and
(46), we have

o2(k, n) [ 4pb C
a

e2a
(2sa+1) za
(2pl2a)

3/2 C
.

q=1

zq−1a
`q
uq(k, n) (50)

Two integrations by parts of the factor exp[i2pnqs] in (45) show that

uq(k, n) [
1
n2
k2l2(1+k2l2), n ] 0 (51)

with l=supa la. Inserting this bound in (50) gives

o2(k, n) [
o2D
n2
C(z) k2l2(1+k2l2), n ] 0 (52)

where C(z) is a finite function of z if z < 1. The decay of o2(k, n) for large n
is therefore fast enough to ensure the convergence of ;n o

2(k, n).

3.3. Large Distance Decay of f

The asymptotic behaviour of f(r, qa, qb) as |r|Q. is very similar to
that of fMB (the Maxwell–Boltzmann approximation of f) obtained in
ref. 19. It is determined by the possible non analytic part of f̃(k, qa, qb) as
k Q 0.

We determine first the small k behaviour of the ‘‘screening coeffi-
cients’’ o2(k, n). By expanding in a Taylor series exp[ik ·laX(s)] in (37), we
find

o2(k, n)=o2dn, 0+cnk2+O(o2Dl
4k4) (53)

with

o2 — 4pb F dq e2aq
2z(q) (54)

and

cn —
4pb
3

F dq e2al
2
az(q) : F

q

0
ds X2(s) e i2pns :

2

=O 1o
2
Dl
2

n2
2 (55)
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In writing (55), we have taken into account that the measure D(X) and
z(q) are invariant under space inversion and rotations. The estimate 1/n2

follows from (15) and direct evaluation of the functional integral (and the
time integration over s) with the covariance (6). The estimate for the
remainder in (53) is obtained by writing the latter, using (33), as

o2(k, n)−o2 dn, 0− cnk2=4pb F dq e2aq F
q

0
ds z(q)

×1e ik ·laX(s)− C
3

m=0

1
m!
(ik ·laX(s))m2 e i2pns (56)

where odd terms in X(s) have been freely substracted, and by using the
bounds |exp[ix]−;3

m=0 (ix)
m/m!| [ C |x|4 and (15).

The zero frequency coefficient o2(k, 0) does not vanish at k=0, con-
trary to the non-zero frequency terms. We split therefore the effective
potential into

f̃(k, qa, qb)=f̃n=0(k, qa, qb)+f̃n ] 0(k, qa, qb) (57)

where

f̃n=0(k, qa, qb)=F
qa

0
dya F

qb

0
dyb e ik[laXa(ya)−lbXb(yb)]

4p
k2+o2(k, 0)

(58)

f̃n ] 0(k, qa, qb)=F
qa

0
dya F

qb

0
dyb e ik[laXa(ya)−lbXb(yb)] C

n ] 0

4p
k2+o2(k, n)

e2ipn(ya −yb)

(59)

Since all moments of the Gaussian measure D(X) are finite, o2(k, n) has a
Taylor expansion in k at arbitrary order and is hence an infinitely differen-
tiable function of k. Using (53) and (42), f̃n=0(k, qa, qb) is also an infinitely
differentiable function of k implying that its Fourier transform decays
faster than any inverse power of r. Recalling (41), the zero frequency part
fn=0 describes collective screening effects with an inverse length o−1 that is
asymptotic to the classical Debye screening length o−1D as zQ 0.

The part fn ] 0 is not exponentially screened because of the different
small k behaviour o2(k, n) ’ cnk2 for n ] 0. Taking into account >q0 dy
exp[2ipny]=0 and (53), the leading term of (59) as kQ 0 is

fn ] 0(k, qa, qb) ’
kQ 0

F
qa

0
dya F

qb

0
dyb h(ya−yb)

(k ·laXa(ya))(k ·lbXb(yb))
k2

(60)
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where h(y)=;n ] 0
e2ipny

1+cn
. Hence f(r, qa, qb) decays as a dipolar potential

f(r, qa, qb) ’
rQ.

−F
qa

0
dya F

qb

0
dyb h(ya− yb)(laXa(ya) ·N)(lbXb(yb) ·N)

1
r
(61)

This unscreened dipolar tail is responsible for the algebraic decay of
particles and charge correlations in the quantum Coulomb gas. (21, 12)

4. LOW DENSITY BEHAVIOUR OF f

We consider in this section a low density limit that corresponds to a
regime of low degeneracy (la ° a, a: mean interparticle distance) and low
coupling (C — be2/a° 1). In this regime,

z° 1 and oDl° 1 (62)

The first low density deviations of f(La,Lb) from the Coulomb potential
V(La,Lb) are of order oD, and can conveniently be obtained from the
formula (36). All contributions to f that are oDO(z) or oDO(oDl) will be
neglected (see the end result (71)).

We decompose again f according to (57) and consider first the inverse
Fourier transform of the zero frequency part fn=0:

fn=0(r, qa, qb)=
1
(2p)3

F dk F
qa

0
dya F

qb

0
dyb e ik[r+laXa(ya)−lbXb(yb)]

×
4p

k2+o2(k, 0)
(63)

We rewrite the fraction 4p/[k2+o2(k, 0)] as

4p
k2+o2D

+
4p

k2+o2D

o2D−o
2(k, 0)

k2+o2(k, 0)
(64)

The first term, once inverse Fourier transformed in (63), gives the classical
screened Debye potential between loops:

fD(r, qa, qb)=F
qa

0
dya F

qb

0
dyb

e−oD |r+laXa(ya)−lbXb(yb)|

|r+laXa(ya)−lbXb(yb)|
(65)
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The contribution of the second term of (64) is oD[O(z)+O(oDl)]. Indeed,
inserting absolute values in (63) and using the positivity (42), we can
majorize this contribution by

4pqaqb
(2p)3

F dk
1

k2+o2D

|o2D−o
2(k, 0)|
k2

(66)

We split the integral over k into the regions: |k| < l−1 and |k| > l−1. From
the bound (40), the integral over the region |k| > l−1 is oDO(oDl). To
control the small k behaviour of the integrand, we write

|o2D−o
2(k, 0)| [ |o2D−o

2|+|o2−o2(k, 0)| (67)

From (41), the contribution of the first term of (67) to fn=0 is oDO(z), as
seen after introducing the change of variables k=oDq. The estimate

o2(k, 0)−o2

k2
=4pb F dq q F

q

0
ds e2az(q)

e ik ·laX(s)−1
k2

=O(o2Dl
2) (68)

that follows from the invariance of D(X) and z(q) under space inversion
together with the majorations (15) and |exp[ix]−1−ix| [ Cx2, shows that
the second term of (67) gives a contribution oDO(oDl) to f.

We consider now the non-zero frequency part fn ] 0. The fraction
4p/[k2+o2(k, n)] in (59) is rewritten as

4p
k2
−
4p
k2

o2(k, n)
k2+o2(k, n)

(69)

When inserted in (59) and inverse Fourier transformed, the first term
of (69) gives V−Velec, where Velec is the electrostatic potential between
loops (11). To estimate the contribution to f of the second term of (69), we
split as before the k integral into the regions |k| > l−1 and |k| < l−1 and
introduce the majoration (using the positivity (43))

C
n ] 0

o2(k, n)
k2+o2(k, n)

[
1
k2

C
n ] 0
o2(k, n) (70)

The bound (49) shows that the integral over the region |k| > l−1 is
oDO(oDl). Using (52), the integral over the complementary region is also
oDO(oDl).
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Collecting the above results, we obtain the low density asymptotic
behaviour of the effective potential

f(r, qa, qb)=V(r, qa, qb)+fD(r, qa, qb)

−Velec(r, qa, qb)+oD[O(z)+O(oDl)] (71)

where the estimate for the remainder is uniform with respect to r. This
expression allows to derive the following various behaviours of f that
depend on the scale of |r|.

(a) Short Distance Behaviour

If r° o−1D , the exponential in fD can be linearized and (71) becomes

f(r, qa, qb)=V(r, qa, qb)−qaqboD+oD[O(z)+O(oDl)], r, la ° o
−1
D

(72)

The effective potential differs at short distance from the bare Coulomb
potential only by a constant shift at lowest order. The next corrections will
depend on the positions and shapes of the loops.

(b) Classical Screening at Scale r ’ o−1
D

On the scale r ’ o−1D , the term V−Velec in (71) behaves as l2/r3, as can
be seen by introducing the multipolar expansion

1
|r+laXa(ya)−lbXb(yb)|

=
1
|r|
+[laXa(ya)−lbXb(yb)] ·N

1
|r|

+
1
2
([laXa(ya)−lbXb(yb)] ·N)2

1
|r|
+O 1 1

|r|4
2

(73)

The term fD behaves on the other hand as exp[−oDr]/r. At distances
r ’ o−1D , V−Velec is hence smaller than fD by a factor o2Dl

2, so that

f(r, qa, qb)=qaqb
e−oDr

r
+oD[O(z)+O(oDl)], r ’ o−1D (74)

On this scale, the effective potential reduces to the standard Debye potential
that describes the classical collective screening effects.

(c) Large Distance Behaviour

The large distance behaviour of f has already been obtained non per-
turbatively in Section 3.3. It is given by the dipolar tail (61) that involves
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the function h(ya−yb). Notice that this function reduces at low density
to d̃(ya−yb)−1 since cn=O(o2Dl

2). In the zero density limit, this tail
corresponds to the asymptotic behaviour rQ. of V−Velec.

The previous results are interpreted as follows. Since o−1D ± la, the
particles can be treated classically at relative distances r ’ o−1D . Therefore,
the screened potential is expected to behave as its classical counterpart for
such distances. In other words, in the chain summation (20), the leading
contributions arise from configurations such that all loop potentials can be
replaced by the Coulomb potential (18). Only loops with q=1 are retained
since za ° 1. Then, f does reduce to its Debye classical expression (74)
where the classical screening length o−1D appears because the system is
weakly degenerate.

The result (72) can be recovered with similar arguments. By definition,
the effective potential satisfies

f(La,Lb)=V(La,Lb)−b F dL1 z(L1) e
2
a1
V(La,L1) f(L1,Lb) (75)

If |ra− rb | and la are much smaller than o−1D , the leading contribution to the
convolution Vaf arises, at low density, from the regions where the loop L1
is far enough from the loops La and Lb so that V(La,L1) 4 qaq1/|ra− r1 |
and f(L1,Lb) 4 q1qb exp[−oD |r1− rb |]/|r1− rb |. The contribution of these
regions to the convolution is

F dr1
1

|ra− r1 |
e−oD |r1 − rb|

|r1− rb |
4
4p
oD
, |ra− rb |° o

−1
D (76)

The expression (76) is indeed the leading contribution, since it grows like
o−1D while the contribution from the region close to the loops La and Lb
remains finite in the zero density limit. Inserting (76) into (75) and retaining
only the term q1=1, we recover the low density result (72) at short distances.

The effective potential defined in (20) incorporates into a single func-
tion all the basic collective phenomena that screen the interactions of
quantum charges (loops) at short, intermediate and long distance. It will
serve in Section 5 as the basic object in the resummed Mayer diagramma-
tics, which involves graphs with bonds defined in terms of f rather than V.

We mention that the above low density analysis of f allows to derive
useful upper bounds on fch=f−V that are uniform in the loop variables.
The contribution fD−Velec in (71) can indeed be majorized uniformily in r,
qa, qb by

4pqaqb
(2p)3

F dk
o2D

k2(k2+o2D)
=qaqbO(oD) (77)

186 Ballenegger et al.



The estimate O(oD) follows from the change of variables k=oDq. At low
density, there exists therefore a constant C independent of the loop variables
such that

|fch(r, qa, qb)| [ CqaqboD (78)

The bound (78) does not capture the decay of fch with distance. Since
f ’ 1/r3, fch(r, qa, qb)=f(r, qa, qb)−V(r, qa, qb) decreases as (minus) the
Coulomb potential itself. In fact, one can show that fch is majorized at low
density by the electrostatic potential (11):

|fch(r, qa, qb)| [ CVelec(r, qa, qb) (79)

where the constant C is independent of the distance r and the loop
arguments qa, qb. The proof of this statement can be found in appendix B.

5. RESUMMED DIAGRAMMATICS

5.1. Prototype Graphs in Activity

As pointed out after (17), every Mayer graph diverges because of the
long range of the bond f. Just as in the classical Coulomb gas, systematic
resummations can be performed to obtain so-called prototype graphs
where the Coulomb potential is replaced by an integrable effective poten-
tial. The precise form of the effective potential depends on the chosen
decomposition of the bond f into a long range and a short range part.
Several decompositions have already been considered in the literature and
the resulting diagrammatic rules were studied in details. (10, 12) The starting
point of the resummation leading to the effective potential f studied in the
previous section is the decomposition

f(Li,Lj)=−bijV(Li,Lj)+
1
2 b

2
ijV

2(Li,Lj)+fT(Li,Lj) (80)

which defines the truncated bond fT(Li,Lj). We mention only the main
steps of the resummation procedure, skipping all the technical details, since
they are almost identical to those occuring in the above mentioned works.
The replacement of each Mayer bond by its decomposition (80) provides
new graphs built with three kinds of bonds: −bV, 12 b

2V2 and fT. Points in
these diagrams that are either intermediate points in a convolution of two
bonds −bV, or connected only by the single bond 1

2 b
2V2, are called
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Coulomb points. The prototype graphs are then obtained by integrating
over all Coulomb points. By a combinatoric formula, (10) the set of Mayer
graphs is transformed into a new set of prototype graphs, obeying the
following rules. The bonds can be either

FC(La,Lb)=−babf(La,Lb) (81)

where f(La,Lb) is the effective potential (36), or

FR(La,Lb)=eFC(La,Lb)−1−FC(La,Lb) (82)

The points in the prototype graphs have two kinds of weight w(L):

w(L)=˛z(L) (bare loop)
z(L)(eI(L)−1) (dressed loop)

(83)

In (83), I(L) is the sum of all rings and reduces to

I(L)=− 12 be
2
afch(0, q, q) (84)

The bound (78) shows that this quantity is finite. The prototype graphs
obey the usual topological rules of Mayer graphs, with two additional rules
to prevent double counting:

• The convolution of two bonds FC with an intermediate bare loop is
forbidden.

• A bond FR that would be the only link between a bare loop and
the rest of the diagram is forbidden and must be replaced by the bond
Fg
R=FR−

1
2 F

2
C.

The symmetry factor SG attached to a prototype graph G is defined as
usual: it is the number of permutations of the loops that leave the
integrand (the product of the bonds and the weights) invariant. The
resummed series representing the loop density r(L) is eventually written as
(compare with (17))

r(L)=C
G

1
SG

F D
N

n=1
dLn w(Ln)5 D

FC, FR, FR*
F6

G

(85)

where the sum runs over all unlabelled topologically different prototype
graphs G with one root point L, and w and F denote the various kinds
of weights and bonds. The loop correlations r(L1,...,Ln) admit Mayer
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diagrammatic representations similar to (17), but where the graphs have
n root points L1,...,Ln.

5.2. Prototype Graphs in Density

The principle of topological reduction allows to write the Mayer
expansions of the loop correlations r(L1,...,Ln) in terms of graphs with
points carrying the weight r(L) rather than z(L). Topologically, the
graphs in density differ from the graphs in activity only by the absence of
articulation points3 (and the different weight attached to the points). The

3 An articulation point is a point such that when it is suppressed, the graph breaks into two
(or more) parts, at least one of them containing no root point.

Coulomb divergencies in the density Mayer graphs can be removed by a
slightly modified version of the resummation procedure described above.

We calculate first the effective potential fr resummed in density. As
before, fr is defined as the sum of the chain graphs (20), but where the
intermediate loops carry the weight r(L). Let us denote by L[u]=
(a, q, R+laX(u), X( ·+u)−X(u)), u ¥ R, the loop L with the origin set at
R+laX(u) instead of R (L[u] describes indeed the same path R+laX( · )
as L but with the time parameter shifted by u). The loop density r(L)
satisfies then

r(L[u])=r(L), - u ¥ R (86)

To prove (86), recall that, by definition,

r(L[u]
1 )=

1
XL

C
.

n=1

1
(n−1)!

F dL2 · · ·dLn z(L
[u]
1 ) z(L2) · · · z(Ln)

× exp[−bU(L[u]
1 ,L2,...,Ln)] (87)

Introducing the change of variables Ri Q Ri+laXi(u), i=2,..., N and
using the invariance (30) on the measures D(X2),..., D(Xn), we find

r(L[u]
1 )=

1
XL

C
.

n=1

1
(n−1)!

F dL2 · · ·dLn z(L
[u]
1 ) · · · z(L

[u]
n )

× exp[−bU(L[u]
1 ,...,L

[u]
n )] (88)

We obtain (86) by noting that U(L[u]
1 ,...,L

[u]
n )=U(L1,...,Ln) from (8)

and (9) and that z(L[u])=z(L) from (13) and (14).
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Using (86), the loop density r(q) of a homogeneous system is thus
invariant under (29), just as z(q). This allows one to calculate fr exactly in
the same way as the potential f resummed in activity. We find therefore

f̃r(k, qa, qb)=F
qa

0
dsa F

qb

0
dsb e ik · [laXa(sa)−lbXb(sb)] C

.

n=−.

4p
k2+o2r(k, n)

e2ipn(sa −sb)

(89)

with the screening coefficients

o2r(k, n) — 4pb C
a

e2a C
q
q F

q

0
ds F D(X) r(q) e ik ·laX(s)e2ipns (90)

Here, we must be aware that r(L) is only known through its low-fugacity
expansion (85). However, at sufficiently low fugacities, it is expected that
r(L) is close to z(L), and consequently the properties of o2r(k, n) should
be analogous to that of o2(k, n). In particular, the positivity property
o2r(0, 0) > 0 must hold because the polarization cloud around a specified
charge ea of the system must have the sign opposite to ea (see ref. 12 or the
review of ref. 15).

In the resummation scheme in density, it is not necessary anymore
(because of the absence of articulation points) to add and substract the
term 1

2 b
2V2 in the decomposition (80) and there is only one type of weight,

namely r(L). As in the activity expansion, the resummation generates two
kinds of bonds: the bond issued from the chain summation −bfr, and the
bond exp[−bfr]−1+bfr. The prototype graphs in density obey topolog-
ical rules identical to those of the Mayer graphs, with a single exception
thatpreventsdoublecounting:theconvolutionoftwobonds−bfr isforbidden.

5.3. Link with the ‘‘Multipole’’ Prototype Graphs

The prototype graphs (in activity or density) obtained by the above
resummation schemes are particularly convenient, because they obey
diagrammatic rules that are the same as the classical rules first derived by
Meeron. In particular, only two resummed bonds are present, as compared to
the four bonds (Fcc, Fcm, Fmc and FR) of the ‘‘multipole’’ diagrammatics.(12)

The link between these two resummations can be made explicit by introducing
in every bond of (20) the multipole decomposition of the loop potential:

V(L1,L2)=Vcc(L1,L2)+Vcm(L1,L2)+Vmc(L1,L2)+Vmm(L1,L2)
(91)
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where

Vcc=q1q2V(R1−R2) (92)

Vcm=q1 F
q2

0
ds2(V(R1−R2−la2X2(s2))−V(R1−R2)) (93)

Vmc=q2 F
q1

0
ds1(V(R1+la1X1(s1)−R2)−V(R1−R2)) (94)

Vmm=F
q1

0
ds1 F

q2

0
ds2 d̃(s1−s2) V(R1+la1X1(s1)−R2−la2X2(s2))

−Vcc−Vcm−Vmc (95)

In the prototype graphs defined in ref. 12, the bond Fcc is the sum of the
chains of monopole-monopole interactions Vcc. The bond Fcm(L1,L2) cor-
responds to the sum of all chains made of monopole interactions for the
intermediate loops and a monopole-multipole interaction Vcm(•,L2) for the
end loop L2. Fmc is the same as Fcm with the arguments interchanged and
the bond Fmm results from the sum of the chains of monopole interactions
with monopole-multipole interactions at both end points. From these
definitions, we see that the bond FC in our prototype graphs corresponds to
an infinite sum of chain graphs of ref. 12 of arbitrary length, made with
bonds4 Fcc, Fcm, Fmc and Fmm.

4 In ref. 12, the bond Fmm does not appear in fact by itself, but is part of the bond
FR=(FR−Fmm)+Fmm.

5.4. On the Integrability of the Prototype Graphs

There are some important comments to be made about the finiteness
of the prototype graphs. First of all, we recall that the divergence of the
Coulomb potential V(r) at the origin does not lead to singularities in the
quantum Mayer graphs. Indeed, point charges with opposite sign do not
collapse in quantum mechanics, and no ad-hoc short-ranged regularization
is needed. Mathematically, these Coulomb divergencies are smoothed out
by the functional integrations over the shapes of the loops. For example,
the expression

F D(X) exp 5be2 F q
0

ds
1

|r+lX(s)|
6 < C (96)
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is bounded uniformily in r. This follows directly from the finiteness of
the matrix element Or|exp[−bqH]|rP for the hydrogen Hamiltonian H=
p2/2m−e2/|r|. As a corollary, for all r,

F D(X) 1F q
0

ds
1

|r+lX(s)|
2m < C, m=1, 2,... (97)

thus any power of the Coulomb potential is integrable (at short distances)
in the Mayer graphs. In the prototype graphs, we are lead to calculate
functional integrals over powers of V and fch. The local integrability of fch
will follow from that of Velec by the bound (79). Notice that the functional
integrals over Velec do not have simple quantum mechanical matrix elements
equivalents. However, they are finite as proved in appendix C.

In the thermodynamic limit, for the infinitely extended system, there
are two potentially dangerous unbounded parameters in the loop var-
iables (2), namely the R-integation extends over the whole space and the
q-summation extends over loops with unlimited numbers of particles.5 Both

5 The integration on the shape of the loop is not dangerous because the measure D(X) has a
Gaussian small weight for large loops.

can lead to divergences.
The present formalism of prototype graphs is devised to cure the

divergences arising from the long range of the Coulomb potential in such a
way that prototype graphs are now finite as far as spatial integrations are
concerned. In view of (61), FC(a, b) is at the border of integrability, like
in a dipole gas, and FR(a, b) ’ |ra− rb |−6 is integrable at large distances.
Integrations on the variables of a loop connected by a single bond FC are
finite if integration on the shape of the loop is performed first. This is
argumented in more details in ref. 12. However the convergence of
q-summations is not guaranteed in this formalism. Indeed, the charges in a
given graph are distributed into loops and interact according to the bonds
(product of FC and FR) and to the self energy factors exp[−bU(L)]. This
set of interactions does not contain in general all the necessary mutual
interactions between the charges to ensure stability of the system when
the number of particles in the loops becomes very large. For example, the
graph

presents an excess of Coulomb binding energy when the black and white
loops carry charges of opposite sign because of the absence of repulsive
interaction between the two black loops. The point is that individual
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prototype graphs, which are made of interacting loops, are not in one to
one correspondence with physical processes that involve clusters of charges
with all mutual interactions included. A prototype graph must hence be
understood as a convenient compact notation for the set of all graphs
having the same structure as the prototype graph but in which the points
are loops with specified particle species a and number of particles q.

The ‘‘compact’’ notation for prototype graphs is especially useful if
one wishes to derive exact relations between physical quantities (such as in
the applications presented in Section 6). Obtaining such relations requires
dealing with all graphs together in a compact way, including the effects of
quantum statistics: the present formalism is particularly efficient in this
respect. If wished, infinite particle summations occuring in intermediate
steps can be made finite by introducing a cut-off q [ Q <. which can be
removed when the initial and end points of the calculation represent well
defined quantities.

If the formalism is used to derive explicit forms of low density expan-
sions, such as a virial expansion for ionized or recombined phases, the
resummed diagrammatic series must be understood to consist of prototype
graphs with loops having a fixed number of particles. Then, at a given
order in density, only a finite number of such graphs need to be retained.
This is the point of view adopted in refs. 12 and 14 to establish the low
density equation of state. To go beyond the plasma phase and to derive
equation of states for atomic and molecular gases, it will be convenient to
introduce another resummation scheme (the screened virial expansion)
where charges are not basically reorganized into loops but into clusters of
finitely many nuclei and electrons that have the full set of pair interactions
between them. This is the subject of a companion paper in preparation. (22)

6. APPLICATIONS

6.1. Sum Rules in Quantum Plasmas

The equilibrium correlations of a plasma obey sum rules that express
the screening of the system’s internal charges, as well as that of any exter-
nal classical charge distribution. (23) In this last section, we retrieve such sum
rules for the quantum multicomponent plasma using the prototype graphs
defined in Section 5. The resummation in terms of a single effective poten-
tial proves to be particularly efficient for this purpose. It allows us to prove
the quantum sum rules via a simple extension of the method used in the
classical case. This diagrammatical method was apparently first devised
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by F. Cornu. (12, 14) In order to connect the screening properties of loops to
those of particles, it is necessary to establish the relations between the par-
ticle correlations r(a1, r1,..., an, rn) and the loop correlations r(L1,...,Ln).
The relations for the one and the two-point functions are found in ref. 12.
In Appendix D, we introduce an efficient way to derive the connexion
between loop and particle correlations of higher order that is based on the
invariance (30) of the measure D(X).

The simplest sum rule is the local neutrality equation

C
a

eara(r)=0 (99)

We will also derive the charge sum rules

F dr C
a

ea rT, c.p.(a, r | a1, r1,..., an, rn)=0 (100)

for n=1 and 2. The notation rT, c.p. means that the correlation function is
truncated with respect to the n particles located at r1,..., rn, and that the
contribution of coincident particles is included, namely

rT, c.p.(a, r | a1, r1,..., an, rn)=r(a, r, a1, r1,..., an, rn)

−r(a, r) r(a1, r1,..., an, rn)

+C
n

j=1
da, ajd(r− rj) r(a1, r1,..., an, rn) (101)

The function rT, c.p. is, after division by r(a1, r1,..., an, rn), the excess par-
ticle density of species a at r when there are particles of species a1,..., an
located at r1 ] ... ] rn. The full set of charge sum rules (100) for arbitrary n
is expected to hold in the one and multi-component quantum plasmas: they
directly follow from the structure of the equation of motion for imaginary
time Green’s functions (Section III and V of ref. 21). Another derivation
has been proposed in ref. 24 based on the Bogoliubov hierarchy equations
for reduced density matrices. The latter derivation is based on a priori
assumptions on the clustering rate of these reduced density matrices that
also involve their off-diagonal parts. We will see that the charge sum rules
(100) are direct consequences of sum rules obeyed by the loop correlations
that can easily be derived (at least formally) from their diagrammatic series.

At low densities, the classical plasma obeys multipolar sum rules
stating that the multipoles generated by any configuration of internal charges
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are exactly compensated on average by those of the corresponding screening
cloud. The simplest relation is the classical dipolar sum rule

F dr C
a

ear r
classical
T, c.p. (a, r | a1, r1, a2, r2)=0 (102)

If the charges are quantum mechanical, this relation still holds for the
homogeneous one component plasma, a consequence of the special fact
that in this system the total current operator is proportional to the total
momentum operator, which is a constant of the motion (Section III of
ref. 21). For a multicomponent quantum plasma, we will argue, on the
basis of the resummed diagrammatic series, that the dipolar sum rule (102)
for different species cannot hold because of the quantum fluctuations of
individual charges. The fate of higher order multipolar sum rules is similar
for both the one and multi-component quantum plasmas: they are no
longer valid as it can been seen from the Wigner–Kirkwood semi-classical
expansion. (21)

6.1.1. Local Neutrality

It is shown in Appendix D that r(a, r) is given by (D.4). The average
charge density hence becomes

C
a

ear(a, r)=F dq eaq r(L) (103)

We derive the neutrality relation (99) by using the resummed diagrammatic
series in activity of r(L). Let us call L a Coulomb root point in a proto-
type graph of this series if L is a bare loop (see (83)) and is linked to the
rest of the diagram by exactly one bond FC, and split the density of loops
accordingly:

r(L)=rc(L)+rnc(L) (104)

where rc(L) (rnc(L)) is the sum of the G-diagrams where L is (is not) a
Coulomb point. Because convolutions of Coulomb points are forbidden in
prototype graphs, this definition implies immediately the integral equation

rc(L)=F dL1 z(L) FC(L,L1) rnc(L1) (105)

and thus

r(L)=F dL1 H(L |L1) rnc(L1) (106)
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with

H(L |L1) — d(L,L1)+z(L) FC(L,L1) (107)

The formula (106) can be represented graphically by

r(L)=
L r

nc(L1)

(108)

where the bond represents the function H(L |L1). The proofs of the sum
rules will all rely on such ‘‘dressing’’ of the root points with the bond H.

For a homogeneous system,H(L |L1)=H(R−R1; q | q1) and rnc(L1)
=rnc(q1). The average charge density therefore reads, from (103) and
(106),

C
a

eara=lim
kQ 0

F dq F dq1 eaqH(k; q | q1) rnc(q1) (109)

The Fourier transform of the bond H, and its small k behaviour, can be
evaluated from the analysis of f of Section 3. We find that it satisfies

F dq eaqH(k; q | qŒ)=eaŒ 5C
n

k2

k2+o2(k, n)
F
qŒ

0
dsŒ e−ik ·laŒXŒ(sŒ)e i2pnsŒ

− C
qŒ

k=2
(e−ik ·laŒXŒ(k−1)−1)6=O(k) (110)

The integral in (109) therefore vanishes in the limit kQ 0 and the local
neutrality is proved.

To obtain (110), we write the Fourier transform of the bond H using
the explicit form (36) of f̃(k, q, qŒ):

H̃(k; q | qŒ)=d(q, qŒ)+z(q)(−b) eaeaŒ F
q

0
ds F

qŒ

0
dsŒ e ik · [laX(s)−laŒXŒ(sŒ)]

×C
n

4p
k2+o2(k, n)

e i2pn(s−sŒ) (111)

From the definition (33) of o2(k, n), one has

F dq eaqH̃(k; q | qŒ)=eaŒ 3qŒ−C
n

1 o2(k, n)
k2+o2(k, n)

2 F qŒ
0

dsŒ e−ik ·laŒXŒ(sŒ)e−i2pnsŒ4

(112)
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Adding and substracting 1 in the parenthesis, the rhs of (112) becomes

eaŒ 3qŒ+C
n

k2

k2+o2(k, n)
F
qŒ

0
dsŒ e−ik ·laŒXŒ(sŒ)e i2pnsŒ− C

qŒ

k=1
e−ik ·laŒXŒ(k−1)4 (113)

which is equivalent to (110). The small k behaviour O(k) follows from (53).

6.1.2. Charge Sum Rule

We prove in this section the charge sum rules (100) for n=1 and 2.
(The case n=1 has already been derived in the ‘‘multipole’’ resummation
scheme by F. Cornu (12)).

The relations between the particle correlations and the loop correla-
tions are given in Appendix D. From (D.10), the charge sum rule (100) for
n=1 becomes

F dL eaq C
q1

q1 F D(X1) rT, c.p.(L |L1)=0 (114)

and for n=2, from (D.11) and (30),

F dL eaq 5 C
q1, q2

q1q2 F D(X1) F D(X2) rT, c.p.(L |L1,L2)

+da1, a2 C
q1

F D(X1) C
q1

k=2
d(r (k)1 − r2) rT, c.p.(L |L1)6=0 (115)

In these formulae, the excess loop densities rT, c.p.(L |L1,...,Ln) are
defined in the same way as (101).

For convenience, we use from now on the prototype graphs in density
rather than in activity. We omit however to write the index r in the effec-
tive potential (89) for the sake of notational simplicity. Thus FC(La,Lb)
=−babf(La,Lb) involves the effective potential (89) and the definition of
the bond H is modified according to

H(L |LŒ) — d(L,LŒ)+r(L) FC(L,LŒ) (116)

With these new definitions, it is remarkable that the property (110) still
holds without any change. This is due to the similarity between the for-
mulae (89) and (36) for the effective potentials, and the formulae (90) and
(33) for the screening coefficients. Since the truncation in the loop correla-
tions rT, c.p.(L |L1,...,Ln) is made only with respect to the group of loops
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L1,...,Ln, the diagrammatic expansions of these functions involve graphs
in which the root loop L is connected to at least one of the loops L1,...,Ln
(apart from this, these n loops may be disconnected). Just as the local neu-
trality, the charge sum rules can be proved by ‘‘dressing’’ with the bond H
the root point L. We define therefore the function rc(L |L1,...,Ln)
(rnc(L |L1,...,Ln)) as the sum of the graphs where L is (is not) coulom-
bic. As before, L is a Coulomb root point if it is linked by exactly one
bond FC to the rest of the diagram. The proof of the sum rules proceeds
now by following the derivation of the equivalent classical sum rules.

Case n=1. Using the above definitions, we split rT, c.p.(L |L1)
according to

rT, c.p.(L |L1)=r
c
T(L |L1)+r

nc
T (L |L1)+d(L,L1) r(L1) (117)

Since rcT(L |L1) satisfies the integral equation

rcT(L |L1)=r(L) FC(L,L1) r(L1)+r(L) F dLŒFC(L,LŒ) r
nc
T (LŒ |L1)

(118)

we have the dressing relation

rT, c.p.(L |L1)=r(L1) H(L |L1)+F dLŒH(L |LŒ) rncT (LŒ |L1)
(119)

Graphically, (119) can be represented by

rT, c.p.(L |L1)=
L r(L1) L LŒ L1

(120)

In the above diagram, all points have weight unity, unless stated otherwise
(like r(L1)). The ‘‘narrow part’’ of the asymmetric bond rncT is associated
to the non coulombic loop. In Fourier representation, the convolution on
the intermediate loop LŒ in (119) becomes a product:

r̃T, c.p.(k; q | q1)=r(q1) H̃(k; q | q1)+F dqŒ H̃(k; q | qŒ) r̃ncT (k, qŒ | q1)
(121)

To obtain the sum rule (114), we perform the integral > dq eaq;q1
q1

> D(X1) over this expression and take the limit kQ 0. This limit is zero by
the property (110) and hence the sum rule is proved.

198 Ballenegger et al.



Notice that we can infer from (121) a relation stronger than (114),
namely that

lim
kQ 0

F dq eaq r̃T, c.p.(k, q | q1)=0 (122)

or, singling out the contribution of coincident points,

F dr F dq
rT(r, q | q1)
r(q1)

=−ea1q1, -q1 (123)

This is a charge sum rule for the system of loops. It states that the cloud of
loops induced around a fixed loop L1 of the system carries a total charge
exactly opposite to that of the loop L1. The quantum charge sum rule (100)
for n=1 is hence a direct consequence of the sum rule (123) obeyed by the
system of loops.

Case n=2. The second term of (115) is zero by the sum rule (123), so
we only have to consider

F dL eaq C
q1, q2

q1q2 F D(X1) F D(X2) rT, c.p.(L |L1,L2) (124)

The truncated correlation rT, c.p.(L |L1,L2) satisfies the integral equation

rT, c.p.(L |L1,L2)=F dLŒH(L |LŒ) rncT (LŒ |L1,L2)

+H(L |L1) r(L1,L2)+H(L |L2) r(L1,L2) (125)

where the last two terms take into account the contribution of the co-
incident points and the situations where L is connected with a single
bond FC directly to the loops L1 and L2. Graphically, this dressing
relation is

rT, c.p.(L |L1,L2)= (126)
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Taking the Fourier transform of rT, c.p.(r, q |L1,L2) with respect to r, we
find

r̃T, c.p.(k, q |L1,L2)=F dqŒ H̃(k; q | qŒ) r̃ncT (k, qŒ |L1,L2)

+e−ik · r1H̃(k; q | q1) r(L1,L2)

+e−ik · r2H̃(k; q | q2) r(L1,L2) (127)

Performing >dq eaq over this expression, we see from (110) that this integral
vanishes in the limit kQ 0, so that the sum rule (100) for n=2 is estab-
lished. The charge sum rules for n \ 3 can in principle be proved by the
same method, but the formulae become rapidely very lengthy.

6.1.3. Dipolar Sum Rule

In this section, we argue that the dipolar sum rule does not hold in
general in quantum plasmas, because of the quantum fluctuations of the
charges. The breakdown of this sum rule can already be suspected from the
screening formula (110). The expression (110) has indeed a non vanishing
term of order k and this term is related to the dipole moment of the
screening cloud induced around a fixed loop q.

We consider a weakly degenerate multicomponent plasma and work
in the Maxwell–Boltzmann approximation. All exchange contributions
are neglected, and hence only loops with q=1 remain (all q-sums are
restricted from now on to the terms q=1). Using the formula (D11) for
rT, c.p.(a1, r1 |a2, r2, a3, r3), the total dipole moment reads

F dL1 ea1 r1 F D(X2) F D(X3) rT, c.p.(r1, q1 |L2,L3) (128)

This dipole moment is most easily calculated from the term linear in k in
the Fourier transform

F dq1 ea1 F D(X2) F D(X3) r̃T, c.p.(k, q1 |L2,L3) (129)

and we recall that the truncated loop correlation obey the dressing rela-
tion (127). At low density (C=be2/a° 1, a: mean interparticle distance),
the first term of (127) can be neglected because it is smaller than the others
by a factor C3/2. After calculating > dq1 H̃(k, q1 | qi), i=2, 3 with the help
of (110), (129) becomes
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F D(X2) F D(X3) C
n

k2

k2+o2(k, n)

×F
1

0
ds[ea2e

−ik ·l2X2(s)+ea3e
−ik ·l3X3(s)] e i2pnsr(L2,L3) (130)

In the limit kQ 0, this expression vanishes and we recover the charge sum
rule (100) for two fixed particles. Extracting the terms linear in k, the
dipole moment is found to be, at low density,

F D(X2) F D(X3) F
1

0
ds h(s)[la2ea2X2(s)+la3ea3X3(s)] r(L2,L3) (131)

where h(s) 4 d(s)−1 was defined in (61). Using r(L2,L3)=r(L3,L2), the
invariance of this correlation function under space inversion [r(r; a2, X2;
a3, X3)=r(−r; a2, −X2; a3, −X3)] and the rotational invariance of the
measure D(X), (131) can be rewritten as

F D(X2) F D(X3) F
1

0
ds h(s)X2(s)

×[ea2la2r(r2− r3; a2, X2; a3, X3)+ea3la3r(r2− r3; a3, −X2; a2, X3)]
(132)

If a2=a3, the expression in brackets is even in X2 and thus > D(X2)
vanishes by parity. In the general case a2 ] a3, this symmetry no longer
holds and the dipolar sum rule is expected to break down.

6.2. A Simple Approximation for the Particle Correlations

At low densities, the diagrammatic series provide simple approxima-
tions for the particle correlations by retaining only the first graphs. A pos-
sible one, that preserves the charge sum rules, is, for the loop correlations,

rT(L1 |L2)= (133)

From (D.8), the corresponding particle correlations rT(a1, r1 | a2, r2) are
obtained by inserting (133) into

rT(a1, r1 | a2, r2)= C
q1, q2

q1q2 F D(X1) F D(X2) rT(L1 |L2)

+da1, a2 C
q2

q2 C
q2

k=2
F D(X2) d(r

(k)
2 − r1) r(L2) (134)

Quantum Mayer Graphs for Coulomb Systems 201



In (133), we notice that the first term is nothing but the loop correlations in
the mean-field (Debye-like) approximation. By virtue of (110), we see that
the charge sum rule is already satisfied within this approximation. The next
term in (133) also obeys to this sum rule because the bond FR is dressed
with H: the charge sum rule is there enforced as a consequence of (110)
that accounts for the basic screening mechanisms in the system of loops.

The degeneracy effects are expected to be weak at low densities. Thus,
it is legimate to keep only the contributions of loops with q=1 in the
above approximation. It is clear that the second term of (134), which is due
to exchange effects, no longer contributes to rMBT (a1, r1 | a2, r2). Inserting
the decomposition (116) into (133), we find

rMBT (a1, r1 | a2, r2)=F D(X1) F D(X2) 3

4

(135)

In (135), all densities r(Li) have been replaced by z(Li)=(2sa+1) za/
(2pl2a)

3/2. The bond in the graph (a) is the Mayer bond exp(−bfMB)−1,
where the Maxwell–Boltzmann version fMB of f is given by (89) with
o2r(k, n) taking the value

4pb C
a

e2a
(2sa+1) za
(2pl2a)

3/2 F
1

0
ds e−

1
2
k2l2as(1−s)e i2pns (136)

The bonds FC and FR in the graphs (b), (c) and (d) are of course also
evaluated with the effective potential fMB. We stress that (135) still satisfies
the charge sum rule, since both the dressed structure of (133) and the
property (110) are conserved within the Maxwell–Boltzmann description.

The properties of fMB, identical to those of f, enforce the approxima-
tion (135) to reproduce the exact behaviours at short and large distances.
When |r1− r2 |Q 0, fMB behaves as V, and the first term in (135) is, at
lowest order,

(2sa1+1) za1
(2pl2a1 )

3/2

(2sa2+1) za2
(2pl2a2 )

3/2 Or1, r2 | e−bHa1, a2 − e−bHa1e−bHa1 |r1, r2P (137)
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where Ha=p2/2ma is the Hamiltonian of a free particle and Ha1, a2
is the

Hamiltonian of two quantum particles interacting via the Coulomb poten-
tial. The next terms in (135) provide small contributions compared to (137),
which is indeed the expected form of the pair correlations at low densities.
It is obvious that (137) incorporates non-perturbative effects with respect
to interactions and quantum mechanics. In particular, if a1=e and a2=p,
(137) involves contributions of the hydrogen atom that results from the
quantum mechanical binding of one electron and one proton.

At intermediate distances r ’ o−1D , fMB(r, q1, q2) ’ exp[−oDr]/r, and
(135) becomes

rT(a1, r1 |a2, r2) 4 −bea1ea2
e−b|r1 − r2|

|r1− r2 |
, |r1− r2 | ’ o

−1
D (138)

that entirely arises from the graph (a) of (135) with linearized bond
−b12fMB(L1,L2). We recover the familiar classical Debye–Hückel formula
which is indeed valid for distances r ’ o−1D since the size la of quantum
fluctuations of the particles is much smaller than o−1D .

At very large distances, |r1− r2 |Q., fMB behaves as a dipolar potential

−F
1

0
dya F

1

0
dyb(d(ya− yb)−1)(laXa(ya) ·N)(lbXb(yb) ·N)

1
|r|

(139)

The linear contribution of fMB to (135) vanishes after the functional inte-
grations for parity reasons. The square of (139) provides in all the terms
(a)–(d) of (135) 1/r6 contributions, the sum of which does coincide with the
low-density algebraic 1/r6-tail of the correlations. (12)

Notice that the simplest mean-field approximation, described by the
first term in (133), neither captures the local structure nor the large-
distance behaviour. Indeed, non perturbative effects (such as binding)
are crucial at short-distances. Moreover, because of rotational symmetry,
the contributions of this first term, linear in f, are short-ranged while
the 1/r6-tails arise from the fluctuations of f, that is f2. According to the
above considerations, (135) should be a quite accurate approximation at
low densities. Numerical calculations, and comparisons to quantum Monte
Carlo results, are postponed to a next paper.

APPENDIX A. PROOF OF THE INEQUALITY (47)

The function uq(k, n) defined in (45) can be expressed as (l2a/2p)
3/2

times the integral

vq(k, n)=q3/2 F dp e−bqEp F
1

0
ds e−bqs(Ep+k−Ep)e i2pnqs (A.1)
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where Ep=(2p2/2ma. The ‘‘time’’ integration over s can be carried out
explicitely. The result is, using the fact that q and n ] 0 are integers and
keeping only the real value since uq(k, n) \ 0 (see (45)),

vq(k, n)=q3/2 F dp(e−bqEp− e−bqEp+k)
bq(Ep+k−Ep)

(2pnq)2+b2q2(Ep+k−Ep)2
(A.2)

Introducing the change of variable p Q p−k/2, the integrand becomes

vq(k, n)=4`q F dp
e−bq(Ep+Ek/2) sinh(q b(

2

2ma
|p ·k|)

(2pn)2+b2(Ep+k
2
−Ep− k

2
)2
b(2

2ma
|p ·k| (A.3)

where the absolute values were freely introduced since x sinh(x) is an even
function of x. Notice that the integrand in (A3) is non-negative function.
To compare vq(k, n) with v1(k, n), we rewrite (A3) as

vq(k, n)=4`q F dp
e−b(Ep+Ek/2) sinh(b(

2

2ma
|p ·k|)

(2pn)2+b2(Ep+k
2
−Ep− k

2
)2
b(2

2ma
|p ·k|

×5e−(q−1) b(
2

2ma
(p2+k2

4 )
sinh(q b(

2

2ma
|p ·k|)

sinh(b(
2

2ma
|p ·k|)
6 (A.4)

Using p2+k2/4 \ |p ·k|, the expression in brackets is majorized by

rq(x) — e−(q−1) x
sinh(qx)
sinh(x)

, x=
b(2

2ma
|p ·k| \ 0 (A.5)

An analysis of the function rq(x) shows that there exists a constant C > 0
such that rq(x) [ Cq uniformily in x \ 0 and q \ 1. Inserting this majora-
tion in (A.4) gives

vq(k, n) [ Cq3/2vq(k, n) (A.6)

which is equivalent to the assertion (47).

APPENDIX B. PROOF OF THE BOUND (79)

The inverse Fourier transform of (35) is

f̃ch(r, qa, qb)=F
qa

0
dsa F

qb

0
dsb G(r+laXa(sa)−lbXb(sb), sa−sb) (B.1)
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where

G(r, s)=
1
(2p)3

F dk e ik · r C
n

−4po2(k, n)
k2[k2+o2(k, n)]

e2ipns (B.2)

=
1
r
1 −2
p
F
.

0
dk

sin(kr)
k

C
n

o2(k, n)
k2+o2(k, n)

e2ipns2 (B.3)

Proving (79) amounts to show that the expression in braces is bounded
uniformily in |r| and s at low density. We split the k integral according to
G(r, s)=−2/(pr)[GSR(r, s)+GLR(r, s)] where

GSR(r, s)=F
oD

0
dk

sin(kr)
k
H(k, s), GLR(r, s)=F

.

oD

dk
sin(kr)
k
H(k, s)

(B.4)

and

H(k, s)=C
n

o2(k, n)
k2+o2(k, n)

e2ipns (B.5)

From (49) and the positivity o2(k, n) \ 0, |H(k, s)| is bounded at low
density by o2D[1+O(z)]/k2. Hence, using |sin(kr)| [ 1, we obtain the
uniform bound |GLR(r, s)| [ [1+O(z)]/2. Regarding GSR(r, s), more care
has to be exercised because we have to take profit of the oscillations of the
function sin(kr). Notice that, from (43) and (52),

|H(k, s)| [ 1+C
n ] 0

o2(k, n)
k2+o2(k, n)

=1+O(o2Dl
2), k < l−1 (B.6)

The function H(k, s) is therefore bounded uniformily in s and k in the
short range region k [ oD ° l−1. Introducing HT(k, s)=H(k, s)−H(0, s),
the short range part GSR(r, s) is given by

GSR(r, s)=H(0, s) F
oD

0
dk

sin(kr)
k
+F

oD

0
dk

sin(kr)
k
HT(k, s) (B.7)

Since H(0, s) is bounded uniformily in s and the integral >oD0 dk sin(kr)/k
=Si(oDr) is bounded uniformily in r, it remains only to consider the
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second term of (B.7). Using |sin(kr)| [ 1, the latter term is smaller or equal
to

F
1

0
dp
|HT(oD p, s)|

p
(B.8)

An analysis of the function

HT(k, s)=
k2

k2+o2(k, 0)
+C
n ] 0

1 o2(k, n)
k2+o2(k, n)

−
cn

1+cn
2 e i2pns (B.9)

where we used (53), shows that the integral (B.8) is finite. Indeed, using the
positivity cn > 0, which follows from (43), |HT(k, s)| can be bounded by

|HT(k, s)| [
k2

o2(k, 0)
+
1
k2

C
n ] 0
|o2(k, n)− cnk2| (B.10)

The term k2/o2(k, 0) gives a finite contribution to the integral (B.8).
According to (52) and (55), we have

|o2(k, n)− cnk2|=O 1k
2

n2
2 (B.11)

This bound can be combined with the estimate of the remainder in (53) to
yield

|o2(k, n)− cnk2|=O 11k
2

n2
2a1(k4l2)a2 2, n ] 0 (B.12)

where a1+a2=1. Choosing a1=3/4, we see that the contribution of the
second term in (B.10) to (B.8) is finite, since both the summation over n
and the p integral converge. The proof of (79) is hence completed.

APPENDIX C. LOCAL INTEGRABILITY OF V n
elec

In this appendix, we prove that any power of the electrostatic poten-
tial (11) is locally integrable:

F D(Xa) F D(Xb)1F
qa

0
dya F

qb

0
dyb

1
|r+laXa(ya)−lbXb(yb)|

2n < C (C.1)

uniformily in r and n=1, 2,... .
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The integral (C.1) can be evaluated using the covariance (6). We find

F D(Xa) F D(Xb) 1
1
(2p)3

F
qa

0
dya F

qb

0
dyb F dk e−ik · [r+laXa(ya)−lbXb(yb)]

4p
k2
2n

=F 1D
n

i=1
dki
4p
|ki |2

e−iki · r

(2p)3
2 F qa
0

dy1 · · ·dyn F D(Xa) e−ila ;m km ·Xa(ym)

×F
qb

0
dy −1 · · ·dy

−

n F D(Xb) e ilb ;m km ·Xb(yŒm) (C.2)

=F 1D
n

i=1
dki
4p
|ki |2

e−iki · r

(2p)3
21F qa

0
dy1 · · ·dyn e−

1
2
l
2
a C

n
i, j=1 ki ·kj cov(yi, yj)2

×1F qb
0

dy −1 · · ·dy
−

n e−
1
2
l
2
b C

n
i, j=1 ki ·kj cov(yŒi, yŒj)2 (C.3)

Using exp[− 12 l
2
b ;n

i, j=1 ki ·kj cov(y −i, y
−

j)] [ 1, we obtain the upper bound

(C1) [ qnb F 1D
n

i=1
dki
4p
|ki |2

1
(2p)3
2 F qa
0

dy1 · · ·dyn e−
1
2
l
2
a ;

n
i, j=1 ki ·kj cov(yi , yj)

[ qnb F D(Xa)1F
qa

0
ds

1
|laXa(s)|
2n (C.4)

The finiteness of (C.1) follows hence from that of (97).

APPENDIX D. PARTICLE AND LOOP CORRELATIONS

In this appendix, we establish the relations between the loop correla-
tions r(L1,...,Ln) and the particle correlations r(a1, r1,..., an, rn) using a
systematic procedure based on the invariance (30) of the measure D(X).
Since loops themselves involve several particles, we have to distinguish
between particles belonging to the same loop and to different loops. We
illustrate the method in the simple cases of the particle density r(a, r) and
of the two-particle correlations r(a1, r1, a2, r2), and state the result for the
three-point function.

For a configuration of particles distributed in a set of loops {Li}, we
can write the particle density observable r̂(a, r) as a summation on the
loop index i

r̂(a, r)=C
i
dai , a C

qi

k=1
d(r (k)i − r) (D.1)
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where, according to (3), r (k)i =Ri+laiXi(k−1), k=1,..., qi, are the posi-
tions of the particles belonging to the loop i. Taking the average of r̂(a, r)
on the ensemble of loops gives the particle density at r:

r(a, r)=C
q
F D(X) C

q

k=1
r(a, q, r−laX(k−1), X) (D.2)

The main point relies in the simplification of formulae like (D.2). In the
present case, we need only to recall the invariance property (86) of r(L).
For the integer value u=k−1, (86) state that the loop density is invariant
under a reassignement of the origin of the loop L on its kth particle:

r(L)=r(L[k−1])=r(a, q, r (k), X( ·+k−1)−X(k−1)), k=1,..., q
(D.3)

Inserting (D.3) in (D.2) and using (30), we recover the result

r(a, r)=C
q
q F D(X) r(a, q, r, X) (D.4)

The two-point function r(a1, r1, a2, r2) is given in the ensemble of loops by
the average

r(a1, r1, a2, r2)=7C
i ] j
dai, a1daj, a2 C

qi

k=1
C
qj

kŒ=1
d(r (k)i − r1) d(r

(k−)
j − r2)

+da1, a2 C
i
dai, a1 C

qi

k, kŒ=1
k ] kŒ

d(r (k)i − r1) d(r
(kŒ)
i − r2)8

loops
(D.5)

The first contribution in (D.5) refers to particles in different loops and the
second contribution to particles within the same loop. In terms of the loop
correlations, (D.5) becomes,

r(a1, r1, a2, r2)

= C
q1, q2

F D(X1) D(X2) C
q1

k=1
C
q2

kŒ=1

×r(a1, q1, r1−l1X1(k−1), X1; a2, q2, r2−l2X2(kŒ−1), X2)

+da1, a2 C
q2

F D(X2) C
q2

k, kŒ=1
k ] kŒ

d(r1−l2X2(k−1)− r2+l2X2(kŒ−1))

×r(a2, q2, r2−l2X2(k−1), X2) (D.6)
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To simplify this formula, one uses the fact that the n-point correlations
r(L1,...,Ln) are invariant under changing the origin of any loop Li on
another particle within the same loop:

r(L1,...,Li,...,Ln)=r(L1,...,L
[k−1]
i ,...,Ln), k=1,..., qi (D.7)

This invariance follows from the special forms of (13), (14) and (9) which
are insensitive to the choice of the origin. Inserting (D.7) in (D.6) and using
the invariance (30) of the measure D(X), we find

r(a1, r1, a2, r2)= C
q1, q2

q1q2 F D(X1) D(X2) r(L1,L2)

+da1, a2 C
q2

q2 C
q2

k=2
F D(X2) d(r

(k)
2 − r1) r(L2) (D.8)

where the loops L1 and L2 are located at r1 and r2 For the three-particle
correlations, we find similarly

r(a1, r1, a2, r2, a3, r3)

= C
q1, q2, q3

q1q2q3 F D(X1) D(X2) D(X3) r(L1,L2,L3)

+da1, a3 C
q2

q2 C
q3

q3 C
q3

k=2
F D(X2) D(X3) d(r

(k)
3 − r1) r(L2,L3)

+da1, a2 C
q3

q3 C
q2

q2 C
q2

k=2
F D(X2) D(X3) d(r

(k)
2 − r1) r(L2,L3)

+da2, a3 C
q1

q1 C
q2

q2 C
q2

k=2
F D(X1) D(X2) d(r

(k)
2 − r3) r(L1,L2)

+da1, a2da2, a3 C
q1

q1 C
q1

k, kŒ \ 2
k ] kŒ

F D(X1) d(r
(k)
1 − r2) d(r

(kŒ)
1 − r3) r(L1) (D.9)

All terms except the first one come from exchange: the last term corre-
sponds to all particles in the same loop whereas in the three others only
two particles are in the same loop. The above formulae are also valid in an
inhomogeneous system.
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The charge sum rules (100) involve the excess particle densities (101)
that include coincident points. These densities are easily obtained from the
above results. For n=1, the excess particle density reads

rT, c.p.(a1, r1 | a2, r2)= C
q1, q2

q1q2 F D(X1) D(X2) rT(L1 |L2)

+da1, a2 C
q2

q2 C
q2

k=1
F D(X2) d(r

(k)
2 − r1) r(L2) (D.10)

Notice that the truncation in rT(L1 |L2)=r(L1,L2)−r(L1) r(L2) origi-
nates from the second term in the rhs of (101) when (D.4) is used, and that
the contribution of coincident points gives the term k=1 of the sum
in (D.10). For n=2, we find similarly

rT, c.p.(a1, r1 | a2, r2, a3, r3)

= C
q1, q2, q3

q1q2q3 F D(X1) D(X2) D(X3) rT(L1 |L2,L3)

+da1, a3 C
q2, q3

q2q3 C
q3

k=1
F D(X2) D(X3) d(r

(k)
3 − r1) r(L2,L3)

+da1, a2 C
q2, q3

q2q3 C
q2

k=1
F D(X2) D(X3) d(r

(k)
2 − r1) r(L2,L3)

+da2, a3 C
q1, q2

q1q2 C
q2

k=2
F D(X1) D(X2) d(r

(k)
2 − r3) rT(L1 |L2)

+da1, a2da2, a3 C
q1

q1 C
q1

k, kŒ=1
k ] kŒ

F D(X1) d(r
(k)
1 − r2) d(r

(kŒ)
1 − r3) r(L1) (D.11)

The truncations in rT(L1 |L2,L3)=r(L1,L2,L3)−r(L1) r(L2,L3) and
in rT(L1 |L2) come, as before, from the second term of (101) after substi-
tution of (D.8). The contribution of coincident points gives the terms k=1
in the second and third line of (D.11) and, after a minor rewriting of the
exchange contribution in (D.8), the terms k=1, kŒ \ 2 and kŒ=1, k \ 2 in
the last line of (D.11).
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