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Abstract

We review a number of exact results concerning the recombined electron–proton gas. The
recombination problem can be formulated in precise terms in the atomic limit. In this limit one
lets the density and the temperature tend to zero in a coupled way so that the resulting energy–
entropy balance favors the formation of certain chemical species. This enables to develop a clear
understanding of the dielectric versus conducting behavior in the system. In particular, we give a
0rst principle derivation of the dielectric constant of the dilute atomic gas without presupposing
the existence of atoms. The analysis relies on the path integral representation of the Coulomb
gas together with Mayer diagrammatic techniques. c© 2002 Elsevier Science B.V. All rights
reserved.

1. Introduction

Most of the nonrelativistic physics is reputed to be hidden within the N -body
Hamiltonian

H =
N∑
j=1

|pj|2
2m�j

+
N∑
i¡j

e�i e�j
|ri − rj| (1)

describing the Coulomb interaction of N quantum particles (point nuclei and electrons)
of species � = 1; 2; : : : with charge e� and mass m�. It is therefore of fundamental
interest to derive exact and rigorous results pertaining to this Hamiltonian. A result
is exact if it can be formally derived without recourse to intermediate approximations
or use of models (e.g. asymptotics but without control on the remainder). A result is
rigorous if its proof meets the professional standards of mathematics. For simplicity,
we shall restrict our considerations, in the sequel, to the electron–proton system (e–p)
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in thermal equilibrium at inverse temperature 
. We denote by HNeNp the Coulomb
Hamiltonian for Ne electrons of charge e and mass me and Np protons of charge −e
and mass mp. We 0rst recall basic rigorous results concerning the thermodynamics of
this system (Section 2), and then state some exact results on screening and correlations
(Section 3). The used tools (quantum Mayer graphs) are brie;y described in Section 4.

2. Rigorous results for thermodynamics

2.1. Stability of matter [1]

There exists a constant C¿ 0 such that

HNeNp ¿− C(Ne + Np) ; (2)

which assures that matter does not implode because of the r−1 singularity of the
Coulomb potential between charges of opposite sign. In a general multicomponent
system, the proof requires that at least one of the particle species (say the electrons)
is fermionic. The value of the constant C found in most recent proofs is not too large,
but probably not optimal. The stability statement can be formulated in a more re0ned
way. Let Ea be the ground state energy of the hydrogen atom. Then there is a constant
B; 0¡B¡ |Ea|, such that [3]

HNeNp ¿− B(Ne + Np − 1) for all (Ne; Np) �=(0; 0); (1; 1) : (3)

The point here is that the constant B can be chosen strictly less than |Ea| for all cases
except for the hydrogen atom itself. This is a still unproven, but plausible, conjecture
which we shall adopt here as a working hypothesis.

2.2. Existence of the thermodynamic limit [2]

Let p�(�e; �p; 
) be the grand-canonical pressure of the e–p system in a volume �,
then

lim
�→∞

p�(�e; �p; 
) = p(�; 
) : (4)

The existence of this limit assures that the system does not explode in spite of the long
range of the Coulomb potential. Screening is the essential ingredient for the proof. The
in0nite volume pressure p(
; �) depends only on the combination � = (�e + �p)=2 of
the chemical potentials �e and �p of the electrons and protons. This indicates that the
system is necessarily locally neutral, namely

�e = �p ; (5)

where �e; �p are the electronic and protonic densities.

2.3. The atomic limit [3–5]

The theorem on the atomic limit is a precise statement about the recombination of
electrons and protons into a perfect gas of hydrogen atoms. We introduce the density
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of an ideal gas of hydrogen atoms

�ida =
4

(2��2a)3=2
e−
(Ea−2�); � =

�e + �p
2

; (6)

where �a = ˝
√

=(me + mp) is the thermal de Broglie length of the atom and the

factor 4 accounts for the spin degeneracy. Here all eDects of the Coulomb interaction
are disregarded except for the binding energy |Ea| of the atom. In the same way, we
de0ne the densities of electrons and protons

�ide = �idp = 2
(√memp

2�
˝2

)3=2

e
� : (7)

The neutrality is achieved by the special choice (�e − �p)=2 = (3=4
) ln(mp=me) for
the diDerence of their chemical potentials. Then the following statement is true: if the
stability of matter estimate (3) holds, then there exists an interval ]Ea ; Ea + �] (�
depends on B) such that for � in this interval [3]


p(�; 
) = �ida (1 + O(e−c
)) as 
 → ∞; c¿ 0 : (8)

Namely, if � is chosen slightly larger than Ea, one obtains the equation of state of a
perfect atomic gas up to an exponentially small correction. When �∈ ]Ea ; Ea +�], one
shows that the following set of inequalities:

0¡Ea − 2�¡ENeNp − �(Ne + Np) (9)

is satis0ed for all (Ne; Np) �=(0; 0); (1; 1), where ENe ; Np is the in0mum of the spectrum
of HNeNp . In general, the density �idNeNp

of an ion or molecule made of Ne electrons and
Np protons is de0ned as

�idNeNp
= dNeNp

1
(2��2NeNp

)3=2
e−
(ENeNp−�(Ne+Np)) : (10)

Hence, these densities are all exponentially smaller than the atomic density (6).
If � is lowered below Ea, the energy–entropy balance favors dissociation and the

pressure approaches that of an ideal plasma: for �¡Ea


p(�; 
) = (�ide + �idp )(1 + O(e−c
)); 
 → ∞ : (11)

3. Correlations and screening

In recent years, a number of exact results have been obtained on the correlations of
the Coulomb system at low density. These results are derived in a formal way by the
method of quantum Mayer graphs that will be brie;y presented in Section 4. They are
exact but not rigorous in the sense that they are established for each individual graph,
without control of the sum of the diagrammatic series. A review and many references
can be found in Ref. [5]. The recombination problem is an old subject which has
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also been extensively studied by means of the Green function and Feynman diagram
technique of the many-body problem [6].
When we look for more detailed information, we must realize that many diDerent

phenomena have a common origin in the basic Coulomb potential. In particular, in
the quantum system, there is a variety of possible screening mechanisms. As in the
classical Coulomb gas, there is a collective screening eDect involving clouds of unbound
charges on the scale of the Debye length. At suIciently low temperature, charges
may bind to form neutral atoms or molecules whose diameter is of the order of the
Bohr radius. Finally, atomic or molecular dipoles can be polarized to provide dielectric
screening.

3.1. The response function to an external classical charge

A localized classical external charge density cext(r) gives rise to the additional
Coulomb energy

U ext =
N∑
i=1

e�i

∫
dr

cext(r)
|r − ri| (12)

to be added to Hamiltonian (1). The linear response function �̃(k) to this perturbation
is de0ned as (in Fourier representation)

�̃(k) =
c̃ ind(k)
c̃ ext(k)

(13)

in the limit where c̃ ext(k), the Fourier transform of cext(r), tends to zero. In (13) the
induced charge cind(r) is the charge density in the presence of the interaction (12).
The static dielectric function is related to �̃(k) by

�(k) =
1

�̃(k) + 1
(14)

so �̃(k) yields the basic information about the screening properties. The above formulae
hold in a homogeneous ;uid phase of the Coulomb system.

3.1.1. Perfect screening
The 0rst statement to be made on �̃(k) is the perfect screening rule in the long

wavelength limit, namely,

lim
k→0

�̃(k) =−1 (15)

for any 
¡∞. This is equivalent to limk→0 �(k)=∞, showing that a uniform state of
the e–p system is a perfect conductor at any positive temperature. This is a consequence
of the fact that there is always a tiny fraction of unbound charges, as small as T may
be. Relation (15) has been established using the hierarchy equations for the imaginary
time Green’s functions [7], as well as within the formalism of quantum Mayer graphs
[8,9].
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3.1.2. Dielectric screening
Then the question arises: under what condition does the e–p system have a dielectric

response? Obviously, this will happen in the atomic limit where charges bind to form
atomic dipoles. Secondly, in view of (15), the wave number |k| should not be so
small that perfect screening prevails. To determine the range where dielectric behavior
occurs, consider the expression of �̃(k) obtained with the mean 0eld Debye–HNuckel
approximation, neglecting quantum mechanical binding,

�̃mean 0eld(k) =− �2
D

k2 + �2
D
; (16)

where

�D = �−1
D =

√
8�
e2�ide (17)

is the inverse Debye length. On the other hand, the standard dielectric response of a
gas of noninteracting hydrogen atoms is

�̃ diel =−4��ida � ; (18)

where �= 9
2a

3
B is the polarizability of a single hydrogen atom submitted to a uniform

electric 0eld [10]. Comparing (16) to (18), the dielectric response will dominate if
�̃mean 0eld(k)��̃ diel, implying k��−1

I , with

�I =

√
�

e2

�ida
�ide

(19)

the typical length for the cross-over between ionic and dielectric screening. Moreover,
to have the 0eld uniform on the scale of the atomic center of mass distribution, one
needs k��−1

a (�a is the de Broglie thermal length occurring in (6)). Hence, the range
of wave numbers k for which (18) is expected to be true is

�−1
I �k��−1

a : (20)

These preliminary considerations being made, one can formulate the result on
dielectric screening as follows: choose �∈ ]Ea ; Ea +�] in the interval where the atomic
phase forms, and let k
 be a sequence of wave numbers such that k
 → 0, 
 → ∞
with k
�I → ∞ and k
�a → 0, then [11]

lim

→∞

�̃(k
)
�ida

=−4�� : (21)

Notice that �−1
I ∼ exp [
(Ea − �)=2] is exponentially small with 
 when �¿Ea, but

�−1
a ∼ 1=

√

. Limit (21) says that for 
 large, �̃(k) is essentially independent of k in

the range �−1
I �k��−1

a and asymptotic to value (18).
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3.2. Internal correlations

Some precise asymptotic statements can also be made on the correlations between the
particles in the absence of external perturbations. We just quote some results concerning
the truncated proton–proton correlation �Tpp(r1; r2) = �pp(r1; r2) − �2p. The 0rst fact is
that exponential decay is never true in the quantum gas, but at 0xed 
 and � (in the
;uid phase) [7,8,5]

�Tpp(r1 − r2) ∼ −

A(
; �)
|r1 − r2|6 as |r1 − r2| → ∞ : (22)

The amplitude A depends on 
 and � and can be determined in various asymptotic
situations. At 0xed 
 and low density � → −∞, one 0nds the explicit formula [12]

A(
; �) ∼ −�2p
˝4
3e4

960

(
1
me

+
1
mp

)2

; � → −∞ (23)

showing in particular that, at large distances, the eDective potential between two protons
in the plasma is attractive! If one considers the atomic limit with �∈ ]Ea ; Ea +�], one
0nds that [13]

A(
; �) ∼ (�ida )
2Cw; 
 → ∞ ; (24)

where Cw ¡ 0 is the amplitude of the Van der Waals potential between two isolated
hydrogen atoms as given in textbooks by a standard second-order perturbation calcu-
lation.

4. Quantum Mayer graphs

4.1. The loop Mayer expansion

The mathematical analysis is based on the technique of quantum Mayer graphs [14,5].
These graphs arise when one adopts the Feynman–Kac representation of the Coulomb
statistical weight exp [− 
HNeNp ]. Let us recall that for a single particle in a potential
V with Hamiltonian H = p2=2m+V, one has the formula

〈r|e−
H|r〉= 1
(2��2)3=2

∫
D(�)e−


∫ 1
0 ds V (r+��(s)) ; (25)

where the integration extends over all the closed Brownian paths �(s) (Brownian
bridge) such that �(0)=�(1)=0. Hence a quantum point particle appears as a random
charged 0lament ��(s) of extension �= ˝

√

=m.

With some combinatoric arguments, formula (25) can be extended to the many-body
system by regrouping particles of the same charge and same statistics into random
charged loops. A loop L=(�; q;R;X(s)) is characterized by the particle species �, the
number of particles q it contains, its position in space R and its shape X(s). X(s) is
again a closed Brownian path parametrized by a “time” s, 06 s6 q. The loop carries
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a total charge e�q, but also a dipole and higher multipoles generated by the 0lamentous
charge distribution on X(s). The main advantage of the loop representation is that the
statistical mechanics of point quantum charges becomes isomorphic to that of a certain
gas of ;uctuating multipoles.
The only (but crucial) diDerence from a genuine classical system is the “equal time”

condition. The interaction between two loops inherited from the Feynman–Kac formula
is (here for one-particle loops)

V (L1;L2) =
∫ 1

0
dsV (R1 + �1X1(s)− R2 − �2X2(s)) ; (26)

whereas the electrostatic interaction between two charged wires of shape X1(s) and
X2(s) would be

Velec(L1;L2) =
∫ 1

0
ds1

∫ 1

0
ds2V (R1 + �1X1(s1)− R2 − �2X2(s2)) : (27)

The lack of Debye screening manifested by the algebraic decay (22) of correlations
can precisely be traced out to this diDerence.
Since averages can be performed according to the rules of classical statistical

mechanics in the space of loops, the powerful tools of Mayer diagrams are avail-
able. Bonds receive the factor exp[ − 
V (Li ;Lj)] − 1 and vertices a renormalized
activity z(L) involving the self-energy U (L) of a loop. Coulomb divergencies are
still present since V (L1;L2) ∼ e1q1e2q2=|R1 − R2| as |R1 − R2| → ∞. They can be
cured, as in the classical case, by introducing a screened potential '(La;Lb) by chain
diagram resummations. This is the quantum analogue of the Debye potential. We list
its principal properties [9].
(i) '(L1;L2) reduces to the bare Coulomb potential V (L1;L2) (26) as the density

goes to zero.
(ii) '(L1;L2) (and its powers) is integrable at the origin R1 = R2 because of the

smoothing due to the quantum ;uctuations.
(iii) '(L1;L2) ∼ q1q2 exp[− |R1 −R2|=�D]=|R1 −R2| (the classical Debye potential)

as |R1 − R2| ∼ �D (the Debye length).
(iv) '(L1;L2) is dipolar (∼ |R1 − R2|−3) as |R1 − R2| → ∞.
The graphs of the loop Mayer expansion, with resummed '-bonds, are integrable at
large distance. They have proven to be very useful to derive low-density expansion of
thermodynamics and correlations (see [5] and references therein).

4.2. The screened virial Mayer expansion

The loop formalism is not well suited to the study of the atomic limit because the
self-energy U (L) of a loop involves q particles of the same species, therefore not able
to bind. By a diagrammatic reorganization, it is possible to convert the loop expansion
into the screened virial expansion [15]. In the latter expansion, vertices are labelled by
clusters C(i)=C

(i)
NeNp

of Ne electrons and Np protons and the associated eDective activity
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Z(C(i)) comprises all the mutual screened pair interactions of the charges belonging
to the cluster with proper quantum statistics. In a gas with short-range forces, the
contribution of vertices would yield the standard quantum mechanical virial terms.
Here, because of the presence of the screened potential ', vertices are linked by residual
bonds ∼(*(C(i);C( j)))k , k = 1; 2; 3. The advantage now is that Z(C), after the loop
integration, becomes proportional to �idNeNp

in the atomic limit, hence graphs can be
classi0ed according to the ideal densities of (Ne; Np) clusters. The basic mechanism is
as follows. In the atomic limit, ' reduces to V so that the loop integrals of Z(C) can
be converted to quantum mechanical traces of the type

e
�(Ne+Np)Tr{e−
HNeNp − “truncation”} (28)

by the inverse Feynman–Kac formula. In (28), “truncation” means terms that subtract
out from exp[ − 
HNeNp ] the nonintegrable long-range part, making the trace 0nite.
Moreover, as 
→∞, the dominant contribution to the trace (28) is exp[ − 
ENeNp ],
with ENeNp the ground state energy of HNeNp , so that (28) is indeed asymptotic to �idNeNp

(see (10)).
Application of these ideas to the calculation of the response function and the corre-

lations in the atomic limit requires the control of a number of (nonelementary) mathe-
matical points. For instance the dielectric behavior (21) of the response function arises
from the graph consisting of a single vertex C11 when k is in the range (20). Then,
one has to make sure that one can replace the screened potential by the bare Coulomb
potential without creating any divergences. Secondly, one must show that all eDects in
(28) due to excited and ionized states vanish in this limit. Finally, when � is in the
appropriate range ]Ea ; Ea + �] where inequalities (9) hold, there must be no contribu-
tion of graphs with vertices CNeNp , (Ne; Np) �=(1; 1). In principle, these techniques can
be applied to the classi0cation and evaluation of various Coulomb eDects in a general
nucleo-electronic plasma at low density.
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