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Abstract

We give a new proof that the constitutive relation of macroscopic electrostatics holds in a
dipolar uid with a sample shape independent dielectric constant. Our approach is based on a
BGY-like hierarchy equation which allows us to calculate the canonical one-body density function
up to linear order in the electric �eld, in the thermodynamic limit. The dielectric constant comes
out as an integral over a 3-point correlation function of the in�nite unperturbed (unpolarized)
system, from which one can recover the well-known formula for � in terms of the 2-point direct
correlation function. c© 2000 Elsevier Science B.V. All rights reserved.

In honor of Joel Lebowitz on the occasion of his 70 birthday

1. Introduction

Since the last century, it is known that the phenomenology of linear, homogeneous
and isotropic dielectrics in static �elds is well described by the constitutive relation of
macroscopic electrostatics P(r)=(�−1)=(4�)E(r). The dielectric constant � is assumed
to be an intrinsic quantity of the in�nite unperturbed (without any external �eld applied)
system, that depends only on its thermodynamical state, while on the contrary the
average polarization P(r) and the average electric �eld E(r) depend on the shape of
the �nite system considered. The phenomenology of linear dielectrics is based on the
physical insight that the response of the system is a local phenomenon, the molecules
responding to the ambient electric �eld. The latter is given by the macroscopic �eld
E(r) which, contrary to the external �eld E0(r), includes the contribution of the charge
density induced on the surface of the sample. These charges make the macroscopic �eld
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(as well as the polarization) shape-dependent because of the long range of the Coulomb
potential. Two (related) basic questions then naturally arise:
(a) How do we calculate the dielectric constant of a substance?
(b) For a given material, is the macroscopic relation indeed satis�ed, with the same

and unique dielectric constant, irrespective of the sample shape and of the applied
external �eld?
These questions can only be answered on the basis of a particular model for the

dielectric. The �rst one was studied even before the underlying microscopic structure
of dielectrics was clearly understood. An approximate formula for � was obtained by
Mossotti [1] and Clausius [2] (the corresponding formula for the index of refraction
was given by Lorenz [3] and Lorentz [4,5]) and other approximate results were later
proposed by Debye [6] and Onsager [7]. Except for Debye’s formula, which is an ex-
act low-density asymptotic behavior, these formulae are not really satisfactory because
they are based on uncontrolled approximations, such as the use of macroscopic electro-
statics on a microscopic scale. Kirkwood [8] initiated the modern theory of dielectrics
by using the tools of statistical mechanics. Let us consider a particularly simple model
of a dielectric which is a uid made of N identical molecules carrying an ideal dipole
moment p, in a volume V at temperature T . This model presents the necessary in-
gredients to behave as a dielectric and should obey the phenomenological law. It has
already been much studied in the literature, as well as more elaborate models. We
refer the reader to a few books [9–12] and review articles [13,14] where a complete
list of references can be found. In this context, the two questions already found an
answer. Several exact and equivalent formulae for the dielectric constant were pro-
posed by di�erent authors, in particular [15–18]. We point out in Section 3 that these
formulae can in fact be very easily obtained by specifying the constitutive relation to
the case of an external �eld created by an external charge localized inside the sample.
The question (b) was studied in the pioneering work of Nienhuis and Deutch [19] and
received a complete solution by Ramshaw [20] (it was later studied again by Martina
and Stell [21]). Ramshaw’s approach is based on an integral equation, involving the
direct correlation function, for the linear variation of the one-body density due to an
external electric �eld. If we isolate a purely dipolar contribution in the direct correla-
tion function, we can make the macroscopic �eld appear on one hand, while no other
�nite size e�ect survives in the in�nite volume limit on the other hand. This approach
provides a complete answer to question (b), but unfortunately relies on a diagrammatic
argument for the control of the thermodynamic limit (see Section 3.4).
The purpose of this article is to give an alternative to Ramshaw’s proof which does

not use diagrammatic arguments. Our approach is based on the equilibrium hierarchy
equations for the correlation functions of the �nite system in the presence of an ex-
ternal �eld E0(r), obtained by considering an in�nitesimal dipole orientation change
p→ p+�p. We show, in a diagrammatic-free way, that in the thermodynamic limit the
boundary e�ects on the one-body density function up to linear order in the electric �eld
are entirely contained in the macroscopic �eld E(r). This function, written in terms of
E(r), involves only intrinsic quantities speci�c to the in�nite unpolarized system. This
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approach yields a new formula for the dielectric constant which involves an integral
over a three-point correlation function. Using the hierarchy equations of the in�nite
unperturbed system, we show that this formula is in fact equivalent to the well-known
expression for � in terms of the direct correlation function.
The paper is organized as follows. Since the already vast literature on the subject

may be somewhat overwhelming, we present synthetically in the �rst few sections how
the two questions can be most simply answered. We start by de�ning in Section 2 the
classical rigid-dipole uid model and consider its thermodynamic limit (whose existence
is implicitly assumed in the phenomenology). The equilibrium quantities (pressure, cor-
relations, : : :) are indeed well de�ned and independent of the shape of the sample used
in the limit, although the dipolar potential is at the border of integrability. A few sim-
ple results on the asymptotic decay of the correlations are also given in Section 2.2,
for later use. In Section 3, we consider the linear response of the system to an ex-
ternal electric �eld. After recalling in Section 3.1 a subtlety in the de�nition of the
macroscopic �eld, we point out in Section 3.2 that a straightforward linear response
calculation of the induced polarization is not su�cient to establish the constitutive rela-
tion because of the appearance of a rather delicate shape-dependent integral. In Section
3.3, we show that the well-known formulae for � can be obtained by specifying the
constitutive relation to the special case of an external �eld created by an external
charge localized inside the sample. The in�nite volume limits of the �elds PV (r) and
EV (r) are then easily calculated from their expressions obtained by standard linear
response theory, because no boundary e�ect occurs. We �nish the introductory part
in Section 3.4 with an outline of Ramshaw’s approach to question (b). The Section 4
contains then the detailed presentation of our hierarchy approach and we conclude in
Section 5.

2. The unpolarized in�nite system

2.1. De�nition of the model

We consider a simple model of a dielectric which is a classical dipolar uid made
of N identical molecules in a volume V at temperature T . The molecules are assumed
to carry an ideal unpolarizable dipole moment pi and we denote the position and the
dipole moment of the ith molecule by i = (ri ; pi). An average over the angle of p
will be written as 〈: : :〉p :=1=4�

∫
: : : d
p and the condensed notation

∫
V d1 stands for∫

d
1
∫
V d

3r1. The molecules interact via the dipolar potential and have a hard core of
radius �:

uint(1; 2) =

{−p1 · Edip(r1|2) if |r1 − r2|¿ 2� ;

∞ otherwise ;
(1)

where Edip(r1|2) = −∇1(p2 ·∇2) 1
|r1−r2| is the electric �eld at r1 created by a dipole

p2 at r2. (The choice of this particular short-ranged regularization does not play an
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essential role.) This model presents three independent parameters: the volume V , the
density � = N=V and the inverse temperature � = 1=(kBT ). The excess (non-ideal)
quantities depend on two independent dimensionless parameters: ��3, a measure of the
density of the system, and �p2=�3, a parameter which compare the maximum dipolar
interaction energy (two spheres in contact) to the thermal energy. We shall also use
the dimensionless quantity y = 4���p2=9, which is proportional to the product of the
two parameters.

2.2. The thermodynamic limit and bulk correlations

To our knowledge, there does not exist a rigorous proof of the existence of the
thermodynamic limit for the rigid-dipole uid model in the absence of an external
�eld. However, the existence of this limit is strongly suggested by the observation that
all the graphs in the Mayer expansions of the correlation functions are �nite owing
to a �rst integration over the angles of the dipoles. This integration kills by parity all
the dangerous logarithmic divergent terms which could arise from the slow decay of the
dipolar potential. Note also that Froehlich and Park [22] have rigorously proved the
existence of the thermodynamic limit for a similar model with another short-range
regularization of the dipolar potential. We shall attach a subscript V to a quantity
calculated in the �nite system and none for its value in the thermodynamic limit, since it
is shape independent. At small enough density and high enough temperature, the phase
should be uid and unpolarized, so the one-body density becomes �(1)(r; p)=�(1)=�=4�
in the thermodynamic limit. All the higher order correlations become invariant under
global translations and rotations of their arguments. On the contrary, note that when
the system in submitted to an external �eld, the quantities still depend in general on
the sample shape in the thermodynamic limit and therefore receive a subscript @V .
We denote the two-point density function by �(2)(1; 2) = �(1)�(1)[1 + h(1; 2)], where

h(1; 2) is the Ursell function. The direct correlation function c(1; 2) is de�ned by the
Ornstein–Zernike equation

h(1; 2) = c(1; 2) + �(1)
∫
d3 c(1; 3)h(3; 2) : (2)

As suggested by its diagrammatic Mayer representation, the direct correlation func-
tion is expected to behave asymptotically as −� times the dipolar potential at large
distances. It is useful to isolate in this function the asymptotic dipolar part, and this can
be done by decomposing for example c(1; 2) as c(1; 2)= csr;�(1; 2)+ cdip;�(1; 2) where
csr;�(1; 2) is a short-ranged function (decaying faster than |r1− r2|−3) and cdip;�(1; 2) is
equal to −�(p1 ·∇1)(p2 ·∇2)1=|r1− r2| if |r1− r2|¿ 2� and to 0 otherwise. However,
this decomposition is not the most appropriate one for our purpose, because it leads
to unnecessarily complicated formulae. For instance, the Fourier transform of this last
function is

c̃dip;�(k; p1; p2) =−4��j1(2k�)
2k�

[3(p1 · k̂)(p2 · k̂)− p1 · p2] ; (3)
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where j1(x) = −cos(x)=x + sin(x)=x2 is a modi�ed Bessel function. In order to work
with simpler expressions, we let

c(1; 2) = csr(1; 2) + cdip(1; 2) ; (4)

where csr(1; 2) is again a short-ranged function and

cdip(1; 2) =−� lim
d→0



(p1 ·∇1)(p2 ·∇2)

1
|r1 − r2| if |r1 − r2|¿ 2d ;

4�
3
p1 · p2 �(r1 − r2) otherwise :

(5)

The limit d → 0 is understood to be taken after the spatial integrations over the
variables r1 and r2. The Fourier transform of this function reads c̃dip(k; p1; p2)=−4��
(p1 · k̂)(p2 · k̂) since limx→0j1(x)=x = 1=3. The de�nition (5) may seem arti�cial, but
it corresponds to de�ning cdip(1; 2) as −� times the dipolar potential at all distances,
with a delta function singularity at the origin. This delta singularity appears naturally
in the de�nition of the macroscopic �eld (see Section 3.1) and it should be noted
that −4��(p1 · k̂)(p2 · k̂) is the result expected from a calculation in the sense of
distributions of the Fourier transform of the full dipolar potential. In the limit k → 0
at �xed k̂, the Fourier transform of c(1; 2) becomes

lim
k→0

c̃(k; p1; p2) =−4��(p1 · k̂)(p2 · k̂) + c̃0(p1 · p2) ;

c̃0(p1 · p2) = c̃sr(k = 0; p1; p2) : (6)

The �rst singular term that still depends on k̂ arises from the slow 1=r312-tail in c(1; 2)
and the second term c̃sr(k=0; p1; p2) is necessarily, by rotational invariance, a function
of the relative angle between p1 and p2. Substituting the decomposition (4) in the
Ornstein–Zernike equation (2) gives [15]

h(1; 2) = hsr(1; 2) + hlr(1; 2) (7)

with

hsr(1; 2) = csr(1; 2) + �(1)
∫
d3csr(1; 2)hsr(3; 2) ; (8)

hlr(1; 2) =
∫
d3 d4[�(1; 3) + �(1)hsr(1; 3)]cdip(3; 4)[�(4; 2)

+�(1)hsr(4; 2) + �(1)hlr(4; 2)] : (9)

Inserting the result (6) in these equations shows that the Fourier transform of the Ursell
function takes the following form in the limit k → 0:

lim
k→0

h̃(k; p1; p2) = �(p1 · k̂)(p2 · k̂) + h̃0(p1 · p2) ;

h̃0(p1 · p2) = hsr(k = 0; p1; p2) ; (10)

where � is a coe�cient that depends on the thermodynamic parameters. The form (10)
shows that h(1; 2) also decays as 1=r312 at large distances, like c(1; 2). This simple
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consequence of the Ornstein–Zernike equation (and of the 1=r312-decay of c(1; 2)) is
compatible with an analysis order by order in density of the Mayer graphs that represent
h(1; 2). This diagrammatic analysis also suggests that the next terms in the large-r
asymptotic expansions of h(1; 2) and c(1; 2) decay as 1=r612. Notice that the Ornstein–
Zernike equation, combined with (6) and (10), implies that

h̃0(p1 · p2) = c̃0(p1 · p2) + �(1)
∫
d
3 c̃0(p1 · p3)h̃0(p3 · p2) : (11)

In particular, we have

b= a+ �ba with a= 〈c̃0(p1 · p2)(p̂1 · p̂2)〉p1 ; p2 ;

b= 〈h̃0(p1 · p2)(p̂1 · p̂2)〉p1 ; p2 : (12)

Similar considerations can also be made for higher-order correlations. For example,
the Fourier transform over r3 of the truncated three-point density is also the sum of a
singular term (depending on the non-analytic function k̂) and of a regular (at k = 0)
term:

lim
k→0

�̃(3;T)(1; 2; p3; k) = �̃
(3;T)
sing (1; 2; p3; k̂) + �̃

(3;T)
0 (1; 2; p3) : (13)

3. The system in the presence of an external �eld

3.1. The macroscopic �eld

When a �nite sample of the dipolar uid is submitted to an external �eld E0(r), an
induced polarization

PV (r1) =
∫
d
1 p1�

(1)
V;E0 (1) (14)

appears and the macroscopic �eld EV (r) is given by

EV (r1) = E0(r1)−∇1

∫
V
PV (r2) ·∇2

1
|r1 − r2|d

3r2 (15)

=E0(r1)−
∫
@V

(
∇1

1
|r1 − r2|

)
PV (r2) dS2

+
∫
V
∇2PV (r2)

(
∇1

1
|r1 − r2|

)
d3r2: (16)

These integrals are well de�ned because the volume element d3r2 makes the singularity
of the integrand integrable at r1 = r2. Let us recall a subtlety in the de�nition of the
macroscopic �eld, related to the singularity of the dipolar potential at the origin. If we
call B(r1; d) a ball of radius d centered on r1, we have

lim
d→0

∫
V\B(r1 ; d)

(PV (r2) ·∇2)
(
−∇1

1
|r1 − r2|

)
d3r2
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=
∫
@V

(
−∇1

1
|r1 − r2|

)
PV (r2) dS2

− lim
d→0

∫
@B(r1 ; d)

(
−∇1

1
|r1 − r2|

)
PV (r2) dS2

+
∫
V
∇2 · PV (r2)

(
∇1

1
|r1 − r2|

)
d3r2 : (17)

The integral on the surface @B(r1; d) of the ball gives −4�=3P(r1) in the limit d→ 0.
Combining the last two equations, we �nd

EV (r1) = E0(r1) + lim
d→0

∫
V\B(r1 ; d)

(PV (r2) ·∇2)
(
−∇1

1
|r1 − r2|

)
d3r2 − 4�

3
PV (r1) :

(18)

If we agree to de�ne limd→0
∫
B(r1 ; d)

(PV (r2) ·∇2)(−∇11=|r1− r2|) d3r2 =−4�=3PV (r1),
which is the result suggested by a calculation in the sense of distributions, we can then
write the following formula for the macroscopic �eld

EV (r1) = E0(r1)−
∫
V
(PV (r2) ·∇2)∇1

1
|r1 − r2| d

3r2 : (19)

If we had inverted carelessly the integral and the gradient in Eq. (15), we would have
obtained this formula directly, but would then not know how to treat the singularity
of the dipolar potential at r1 = r2. The previous calculation shows that it should be
handled as the delta function 4�=3�(r1 − r2) [23].

3.2. Linear response and thermodynamic limit

An elementary linear response calculation of the induced polarization results in the
Kirkwood expression

PV (r1) = �
∫
d
1

∫
V
d2[�(1)V (1)�(1; 2) + �

(1)
V (1)�

(1)
V (2)hV (1; 2)]p1(p2 · E0(r2)) :

(20)

This formula shows in particular that the in�nite volume limit of PV (r) depends in the
general case on the shape of the sample, as expected. Such a dependence is produced
by two di�erent mechanisms: the integral

∫
V d

3r2 : : : depends on the shape because
h(1; 2) ∼ |r1 − r2|−3 and also the �nite volume dependent part of the Ursell function,
�hV (1; 2) = hV (1; 2) − h(1; 2), gives a non-vanishing shape-dependent contribution in
the limit V → ∞, as �rst pointed out by Jepsen [24]. These intricate boundary e�ects
make Kirkwood’s formula not useful in answering question (b) but it is valuable for
question (a). Namely, if we consider the special case of an external �eld created by
an external charge localized inside the sample, all these complicated boundary e�ects
disappear, because of the decay of the external �eld E0(r2) at increasing distances.
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However, in this situation, the electric �eld varies over microscopic distances and it is
appropriate to generalize the constitutive relation to

P(r) =
∫
R3
�(r − r′)E(r′) d3r′ =

∫
R3

�(r − r′)− �(r − r′)
4� E(r′) d3r′ (21)

or, in Fourier transform,

P̃(k) =
�(k)− 1
4� Ẽ(k) : (22)

[We do not write a tilde on �(k) and rely on the argument to recognize �(r) from
its Fourier transform �(k).] The (longitudinal) static dielectric function �(k) depends
only on the modulus of k because of the isotropy of the unpolarized system. If we
approximate in (21) the kernel �(r−r′) by the local kernel �(k=0)�(r−r′), we recover
the usual form of the constitutive relation P(r) = (� − 1)=(4�)E(r), with a dielectric
constant � equal to �(k = 0).

3.3. Expressions for � in terms of two-body bulk correlations

We consider the special case of an external charge density localized inside the sam-
ple, where, as already stated, all boundary e�ects become out of play in the thermody-
namic limit. In this limit, the macroscopic �eld does not depend on the shape of the
sample and is given by

E(r1) =−∇1

[∫
[�ext(r2) + �ind(r2)]

1
|r1 − r2|

]
d3r2 ; (23)

where �ind(r)=−∇ ·P(r) is the charge density induced by the external charge �ext(r).
From (22) and (23), the dielectric constant is related to these charge densities by

�−1(k) = 1 + lim
�ext→0

�̃ind(k)
�̃ext(k)

: (24)

[The limit �ext → 0 is necessary to capture only the linear response.] At k = 0, the
fraction �̃ind(0)=�̃ext(0) measures the (incomplete) dielectric screening of the external
charge. The thermodynamic limit of Kirkwood’s expression (20) becomes trivially

P(r1) = �
∫
d
1

∫
R3
d2[�(1)�(1; 2) + �(1)�(1)h(1; 2)]p1(p2 · E0(r2)) : (25)

The integral over r2 is a convolution. Therefore, we obtain by using �̃
ind(k)=−ik·P̃(k)

and Ẽ0(k) =−ik�̃ext(k)4�=k2,
�̃ind(k)
�̃ext(k)

=−4��
[
1
3
�p2 + �2〈h̃(k; p1; p2)(p1 · k̂)(p2 · k̂)〉p1 ; p2

]
: (26)

Substituting this result in (24), we see that the dielectric constant of the dipolar uid
is given in terms of the Ursell function h(1; 2) by [12]

�−1(k) = 1− 3y − 9y�〈h̃(k; p2; p2)(p̂1 · k̂)(p̂2 · k̂)〉p1 ; p2 : (27)
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Recall from (10) that limk→0 h̃(k; p1; p2) still depends on the direction of k̂, so that
we cannot merely infer a formula for �(0) in terms of limk→0〈h̃(k; p1; p2)p1 · p2〉p1·p2 .
Nevertheless, we can express � in terms of quantities that decay faster than h(1; 2), so
that the �nal result does not involve k̂ explicitly. By using (7) and by applying the
convolution theorem to the in�nite series generated by (9), we �nd

〈�2h̃(k; p1; p2)(p̂1 · k̂)(p̂2 · k̂)〉p1 ; p2 = �2〈h̃sr(k; p1; p2)(p̂1 · k̂)(p̂2 · k̂)〉p1 ; p2

+
∞∑
n=1

(−4��p2)n(�〈[�(p1; p2) + �h̃sr(k; p1; p2)](p̂1 · k̂)(p̂2 · k̂)〉p1 ; p2 )n+1 :

(28)

After little algebra, it follows from (27) and (28) that

�(k) = 1 + 3y + 9y�〈hsr(k; p1; p2)( p̂1 · k̂)(p̂2 · k̂)〉p1 ; p2 : (29)

Since the function hsr(1; 2) decays faster than |r1− r2|−3, we obtain in the limit k → 0

�= 1 + 3y(1 + �b) = 1 +
3y

1− �a ; (30)

where the second equality follows from (12). We stress that according to the decompo-
sition (4) and the corresponding csr(1; 2), a reduces to the regular (analytical) part of
c̃(k; p1; p2) at k=0, namely a=〈limk→0 [c̃(k; p1; p2)+4��(p̂1 · k̂)(p̂2 · k̂)](p̂1 · p̂2)〉p1 ; p2 . If
another decomposition of c(1; 2) is used, we obtain of course the same expression for �
in terms of the previous intrinsic a, but the relation between a and the new short-ranged
part of c(1; 2) is modi�ed. For instance, for c(1; 2) = csr;�(1; 2) + cdip;�(1; 2), we have
a= 〈c̃sr;�(k= 0; p1; p2)(p̂1 · p̂2)〉p1 ; p2 + 4��p2=9 and the formula (30) can therefore also
be written in the quite di�erent looking form

�− 1
�+ 2

=
y

1− �〈c̃sr;�(k = 0; p1; p2)(p̂1 · p̂2)〉p1 ; p2
: (31)

The present formula for the dielectric constant (in its various forms) is well known
[15–17], but is derived here in a very simple way. In particular, we did not resort
to intricate diagrammatic analysis nor expansions for the orientational dependence of
the correlations. A similar approach for obtaining the dielectric constant can also be
used in more general classical models of polar uids, where the molecules do not
carry only a purely dipolar electric moment. Instead of calculating the induced charge
density �ind(r) = −∇ · P(r) from Kirkwood’s expression, one can use the standard
linear response result �̃ind(k) =−�S̃(k)�̃ext(k)4�=k2 that leads to

�−1(k) = 1− 4�� S̃(k)
k2

; (32)

where S̃(k) is the Fourier transform of the charge–charge correlation function of the
in�nite unperturbed system. The latter formula for �(k) has been used by Chandler to
give an exact expression for the dielectric constant of a classical uid composed of
polarizable and deformable molecules [18]. It is interesting to note that the result (27)
for the dielectric constant of the rigid-dipole uid model can also be obtained from
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(32) by considering the dipoles to be constituted of two opposite charges ±|p|=d, a
distance d→ 0 apart.

3.4. General validity of the constitutive relation

The formula for �(k) obtained in the previous section is derived under the assumption
that the external charge density �ext(r) is localized inside the sample. Now, we want to
outline Ramshaw’s approach [20,25] which establishes the validity of the constitutive
relation (22) in the general case, with the same expression for �.
Ramshaw’s approach is based on the following integral equation for the linear varia-

tion ��(1)V;E0 (1) of the one-body density due to an external potential �(1)=−p1 ·E0(r1):

��(1)V;E0 (1) = �
(1)
V (1)(−��(1)) + �(1)V (1)

∫
V
d2cV (1; 2)��

(1)
V;E0 (2) : (33)

This equation is a direct, though not immediately obvious, consequence of the de�nition
of the direct correlation function, see [20]. Let us consider the thermodynamic limit
of this equation and introduce for this purpose the decomposition cV (1; 2) = c(1; 2) +
�cV (1; 2). The Mayer density expansion of the function �cV (1; 2) involves connected
diagrams which have neither nodal nor articulation points and in which at least one
black point is integrated over the region R3 \ V (i.e., outside V ) [12]. Because of
the asymptotic dipolar character of the bonds and of the topological structure of the
graphs, the function �cV (1; 2) is expected to behave as

�cV (1; 2) = O
(

1
|r1 − r2|3

)
O
(
1
V

)
+ O

(
1
V 2

)
; (34)

with r1 a point inside the sample far from the boundaries. From (34), we conclude
that the term �(1)V (1)

∫
V d2�cV (1; 2)��

(1)
V;E0 (2) in (33) is dominated by a constant times∫

V d2�cV (1; 2) and vanishes therefore in the thermodynamic limit. This provides

��(1)@V;E0 (1) =
��
4� (p1 · E0(r1)) +

�
4� lim

V→∞

∫
V
d2 c(1; 2)��(1)V;E0 (2) ; (35)

where now only the direct correlation function associated to the in�nite system enters.
If we introduce the decomposition (4), we make the macroscopic �eld (19) appear

��(1)@V;E0 (1) =
��
4� p1 · limV→∞

[
E0(r1)−

∫
V
∇1(P(r2) ·∇2)

1
|r1 − r2|d

3r2

]

+
�
4� lim

V→∞

∫
V
d2 csr(1; 2)��

(1)
@V;E0

(2) : (36)

Because of the integrable decay (faster than |r1 − r2|−3) of the function csr(1; 2), the
integral in the last term can be extended to the whole space:

��(1)@V;E0 (1) =
��
4� (p1 · E(r1)) +

�
4�

∫
R3
d2 csr(1; 2)��

(1)
@V;E0

(2) : (37)
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This integral equation implies that ��(1)@V;E0 (1) depends on the shape of the sample only
through the macroscopic �eld E. Multiplying the previous equation by p1, integrating
over the angles of p1, and using Eq. (8), we obtain

P(r1) =
3y
4�E(r1) + �

�2

(4�)2

∫
d
1

∫
d2 hsr(1; 2)p1(p2 · E(r2)) (38)

which relates P(r) to the macroscopic �eld E(r). Taking a Fourier transform and
using the longitudinality Ẽ(k) = E(k)k̂ of the electrostatic �eld, eventually lead us to
conclude that (22) indeed holds in general, with the same dielectric function (29) as
that found in Section 3.3.

4. Microscopic foundation of the local dielectric law

4.1. The hierarchy equations for the one-body density

We turn now to our main point, i.e., giving a new proof that the constitutive relation
P(r) = (� − 1)=(4�)E(r) is satis�ed in the rigid-dipole uid model with the dielectric
constant (30), in the general case where induced charges appear on the surface of the
dielectric (thereby making the macroscopic �eld and the polarization shape-dependent).
The central quantity of interest is the canonical one-body density up to linear order
in the external �eld E0(r), in the thermodynamic limit. We consider the case where
the external charge density (the source of the external �eld) is localized outside the
considered �nite dielectric sample. Then, E0(r), as well as all the other macroscopic
�elds, varies on macroscopic scales controlled by the size of the sample. The contribu-
tions of eventual external charges localized inside the sample can be treated separately
(like in Section 3.3) by the virtue of the superposition principle. Therefore, they can
be omitted in the present analysis. The thermodynamic limit will be taken by scaling
all the distances by a common multiplicative factor � and setting � → ∞. A point
s1 inside the sample (not on the boundaries) will be transformed into r1 = �s1 which
stays far away from the boundaries in the thermodynamic limit. The one-body density
�(1)@V;E0 (1) is then expected to become homogeneous in a microscopic neighborhood of
r1. This can be checked from a BGY-like equation, that also ultimately provides the
required polarization P(r1) in terms of the macroscopic �eld E(r1).
Let us consider an in�nitesimal change �p1 of the orientation of the dipole p1.

Similarly to the �rst BGY hierarchy equation, the corresponding variation of the
one-body density in the previous thermodynamic limit can be expressed as

��p1�
(1)
@V;E0

(1) :=�(1)@V;E0 (r1; p1 + �p1)− �
(1)
@V;E0

(r1; p1) (39)

=��(1)@V;E0 (1)(�p1 · E0(r1))

+� lim
V→∞

∫
V
d2�(2)V;E0 (1; 2)(�p1 · Edip(r1|2)) : (40)
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The choice of the hard sphere regularization simpli�ed somewhat this equation, but
short-ranged regularizations which depend on the orientations of the dipoles can also
be considered, at the expense of an additional term which does not involve any sample
shape subtlety. Note that the integral in (39) depends on the contrary non-trivially on
the sample shape in the in�nite volume limit, because not only the function �(2)@V;E0 (1; 2)
is shape-dependent, but, more importantly, because the integrand decays only as |r1 −
r2|−3 since �(2)V;E0 (1; 2) is asymptotically equal to �

(1)
V;E0 (1)�

(1)
V;E0 (2). Now the obvious but

main step is to free ourselves from this last delicate shape dependence by expressing the
two-body density in terms of the corresponding truncated quantity (i.e., the correlation).
Employing the notation convention introduced after Eq. (18), we can write

��p1�
(1)
@V;E0

(1) = ��(1)@V;E0 (1)�p1 · limV→∞

[
E0(r1)−

∫
V
(P(r2) ·∇2)∇1

1
|r1 − r2|d

3r2

]

+� lim
V→∞

∫
V
d2�(2;T)V;E0 (1; 2)(�p1 · Edip(r1|2)) : (41)

We recognize in the square brackets the macroscopic �eld (19) while the integral in
the last term can now without harm be extended to the whole space because of the
fast decay of the integrand (at least as |r1 − r2|−6):

��p1�
(1)
@V;E0

(1) = ��(1)@V;E0 (1)(�p1 · E(r1)) + �
∫
R3
d2�(2;T)@V;E0

(1; 2)(�p1 · Edip(r1|2)) :
(42)

Let us linearize this expression with respect to the electric �eld. Since the truncated
two-body density �(2;T)@V;E0

(1; 2) may be viewed as a functional of the one-body density

�(1)@V;E0 (1), we have

�(2;T)@V;E0
(1; 2) = �(2;T)(1; 2) +

∫
d3G(1; 2; 3)��(1)@V;E0 (3) + O(E

2
0) ; (43)

where ��(1)@V;E0 (1) is the linear variation of the one-body density due to the external
�eld (as in Section 3.3) and

G(1; 2; 3) =
��(2;T)(1; 2)
��(1)(3)

= �(1)h(1; 2)[�(1; 3) + �(2; 3)] + �(1)�(1)
�h(1; 2)
��(1)(3)

:

(44)

Both �(2;T)(1; 2) and G(1; 2; 3) refer to the in�nite unperturbed system, and conse-
quently no longer depend on the shape of the genuine �nite sample. The integral over
r3 can be extended to the whole space because of the fast decay of G(1; 2; 3) with
respect to r3 (cf. Appendix A). The linearization of Eq. (42) therefore results in the
following integro-variational equation for ��(1)@V;E0 (1)

��p1�
(1)
@V;E0

(1) = ��(1)(�p1 · E(r1)) + �
∫
R6
d2 d3G(1; 2; 3)��(1)@V;E0 (r1; p3)

× (�p1 · Edip(r1|2)) + O(E2) : (45)



280 A. Alastuey, V. Ballenegger / Physica A 279 (2000) 268–286

In the integral on the right-hand side of (45), ��(1)@V;E0 (r3; p3) has been replaced by

��(1)@V;E0 (r1; p3) because the integrand decays on a �nite microscopic scale while

��(1)@V;E0 (r3; p3) varies on the same macroscopic scale as E(r1). The �rst term of (43) did
not give any contribution to this equation because

∫
d2�(2;T)(1; 2)Edip(r1|2) is collinear

to p1 and �p1 · p1 = 0 (this contribution had to vanish since it is of order zero in
the electric �eld and �(1)(r; p) = �(1) does not depend on the orientation of p). The
structure on the right-hand side of (45) has a very simple physical interpretation that
justi�es the implicit assumptions of the phenomenological construction of the consti-
tutive relation. Indeed, the �rst term, which is of the mean-�eld-type, clearly shows
that the dipoles at r1 feel the macroscopic �eld E(r1) rather than the external �eld
E0(r1). Moreover, the second term involves the contributions of intrinsic correlations
of the unperturbed system, that decay on a �nite microscopic scale. Thus, the re-
sponse ��(1)@V;E0 (1) to the external �eld is proportional to the macroscopic �eld, i.e.,

��(1)@V;E0 (1) ∼ �xEx(r1) + �yEy(r1) + �zEz(r1), where the coe�cients �� only depend
on p1 and on the intrinsic quantities of the homogeneous unperturbed in�nite system,
in perfect agreement with the phenomenological statement. In other words, Eq. (45)
explicits the microscopic foundation of the macroscopic approach. From the previous
considerations, we conclude that ��(1)@V;E0 (r; p) depends on the sample shape and on r
only through the macroscopic �eld E(r). Because of the rotational invariance of the
uid phase considered, this function is necessarily of the form

�(1)@V;E0 (r; p) = �
(1) + ��(1)A p · E(r) + O(E2) : (46)

A constant times p ·E(r) is namely the only rotational invariant scalar expression linear
in E(r) which can be built with the two vectors p and E(r). Here A is a dimensionless
quantity which, from (14), is related to the dielectric constant by �= 1 + 3yA.
The result (46), together with (14), answers to question (b) and shows that the po-

larization P(r) is indeed proportional to the macroscopic �eld E(r), the constant of pro-
portionality being an intrinsic quantity of the in�nite unperturbed system.
It is interesting to note the similarity between our Eq. (45) and Ramshaw’s Eq. (37).
They have the same structure and lead to the same conclusion. Ramshaw’s equation
looks somewhat simpler than ours, but relies on not so trivial properties of the direct
correlation function while our equation is based merely on the large-distance decay of
the two-body correlations which is a rather weak assumption.

4.2. A new intrinsic expression for the dielectric constant

Our hierarchy approach leads to a new explicit formula for the dielectric constant.
If we substitute (46) into (45), we obtain an equation for A:

A�(�p1 · E) = �(�p1 · E) + A
∫
d2 d3G(1; 2; 3)(�p3 · E)�(�p1 · Edip(r1|2)) :

(47)
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The r dependence of the electric �eld E(r) can be omitted since it does not intervene
in the calculation of A. The dielectric constant is therefore given by the following
formula, letting p⊥ = �p1,

�= 1 +
3y
1− I

where

I =
1

(p⊥ · E)�
∫
d2 d3G(1; 2; 3)(p3 · E)(p⊥ · Edip(r1|2)) : (48)

Because of its structure and of the rotational invariance of the in�nite system,
∫
d2 d3

G(1; 2; 3)(p3 ·A)(B ·Edip(r1|2)) is necessarily of the form �(A · p1)(B · p1) + (A ·B).
Since in our case p⊥ · p1 = 0, the factors (p⊥ · E) cancel out and I is independent of
E and p⊥, as expected. The integral I does not necessarily depend either on p1 or on
r1, so that we obtained a well-de�ned intrinsic expression for the dielectric constant.

4.3. Uniqueness of the dielectric constant

The question (b) is now fully answered but we would like to show explicitely that
the formula (48) for the dielectric constant is indeed equivalent to the result (30) (it
has to be so).
The �rst step in this proof is to rewrite (48) in terms of the two- and three-point

density functions. We start by studying the function G(1; 2; 3). From the chain rule,
we have

G(1; 2; 3) =
∫
d4

��(4)
��(1)(3)

��(2;T)(1; 2)
��(4)

: (49)

Since
��(4)
��(1)(3)

=
1
�
c(4; 3)− 1

��(1)
�(4; 3) (50)

and

��(2;T)(1; 2)
��(4)

=−��(3;T)(1; 2; 4)− ��(2;T)(1; 2)[�(1; 4) + �(2; 4)] (51)

we �nd

G(1; 2; 3) = �(1)h(1; 2)[�(1; 3) + �(2; 3)] +
1
�(1)

K(1; 2; 3) ; (52)

where

K(1; 2; 3) = �(3;T)(1; 2; 3)− �(1)

×
∫
d4 (�(3;T)(1; 2; 4) + �(2;T)(1; 2)[�(4; 1) + �(4; 2)])c(4; 3) :

(53)

The reader can �nd a simple diagrammatic interpretation of K(1; 2; 3) in the Appendix A.
Both K and G decay faster than r−33 when r3 is sent to in�nity with 1; 2 and p3 �xed.
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Thus the Fourier transform G̃(1; 2; p3; k) of G with respect to r3 is regular at k = 0,
and reduces to G̃0(1; 2; p3). Then, according to (48), I can be rewritten as

I =
1

(p⊥ · E)�
∫
d
3

∫
d2(E · p3)(p⊥ · Edip(r1|2))G̃0(1; 2; p3) : (54)

In order to express (54) in terms of the Fourier transforms of correlation functions, we
�rst calculate K̃(1; 2; p3; k):

K̃(1; 2; p3; k) = �̃
(3;T)(1; 2; p3; k)− �(1)〈�̃(3;T)(1; 2; p4; k)c̃(k; p4; p3)〉p4

−�(1)�(2;T)(1; 2)[c̃(k; p1; p3) + c̃(k; p2; p3)] : (55)

Substituting (6) and (13) in (55) gives, since the singular terms necessarily cancel out,

K̃0(1; 2; p3) = �̃
(3;T)
0 (1; 2; p3)− �(1)〈�̃(3;T)0 (1; 2; p4)c̃sr(p4 · p3)〉p4

−�(1)�(2;T)(1; 2)[c̃sr(p1 · p3) + c̃sr(p2 · p3)] : (56)

Let us now insert (52) and (56) into (54). Using
∫
d
3(E · p3)c̃sr(p1 · p3) = a(E · p1)

where a is de�ned in (12), we obtain

I =
�(1− a�)
�(1)(E · p⊥)

{∫
d2(E · p1)(p⊥ · Edip(r1|2))�(2;T)(1; 2)

+
∫
d2(E · p2)(p⊥ · Edip(r1|2))�(2;T)(1; 2)

+
∫
d
3(E · p3)

∫
d2(p⊥ · Edip(r1|2))�̃(3;T)0 (1; 2; p3)

}
: (57)

Since I is independent of E, we can evaluate the previous equation in the special case
where E is collinear to p⊥. The �rst term then disappears and we are left with

I =
�(1− a�)
�(1)

{∫
d2( p̂⊥ · p2)( p̂⊥ · Edip(r1|2))�(2;T)(1; 2)

+
∫
d
3

∫
d2( p̂⊥ · p3)( p̂⊥ · Edip(r1|2))�̃(3;T)0 (1; 2; p3)

}
: (58)

We completed the �rst step: the integral I is now expressed in terms of two- and
three-point density correlations.
The next step is to relate the integral over the three-point density in (58) to a

similar integral over a two-point correlation. This relation is obtained by considering
the hierarchy equations of the in�nite system in the absence of an external �eld. The
variation ��p1�

(2;T)(1; 2) produced by an in�nitesimal dipole orientation change p1 →
p1 + �p1 is given by the second BGY-like equation

��p1�
(2;T)(1; 2) = ��p1 · Edip(r1|2)�(2)(1; 2) +

∫
d3�(3)(1; 2; 3)��p1 · Edip(r1|3) :

(59)

In order to relate the integral in the last term to the one which appears in (58), we start
by expressing the two- and three-point density functions in terms of the corresponding
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fully truncated quantities [�(3;T)(1; 2; 3) = �(3)(1; 2; 3)− �(1)(�(2;T)(2; 3) + �(2;T)(1; 3) +
�(2;T)(1; 2))− �(1)�(1)�(1)]:

��p1�
(2;T)(1; 2) = ��p1 · Edip(r1|2)�(2;T)(1; 2) +

∫
d3[�(1){�(1)�(2; 3)

+�(2;T)(2; 3)}+ �(3;T)(1; 2; 3)]��p1 · Edip(r1|3) : (60)

The terms involving �(1)�(2;T)(1; 2) and �(1)�(1)�(1) vanish indeed by parity, while
�(1)

∫
d3�(2;T)(1; 3)��p1 ·Edip(r1|3)=0 because it is proportional by rotational invariance

to �p1·p1=0. We take the Fourier transform
∫
d3r2 exp[−ik·(r1−r2)] : : : of the last equa-

tion, evaluated in the limit k → 0 at �xed k̂. On the left-hand side, we �nd from (10)

lim
k→0

��p1 p̃
(2;T)(k; p1; p2) = (�(1))2[�(�p1 · k̂)(p2 · k) + (�p1 · p2)h̃′0(p1 · p2)]

(61)

with h̃
′
0(x)=dh̃0(x)= dx. Let us consider successively the Fourier transform of the three

terms on the right-hand side of (60). The �rst term is integrable (∼ r−612 ) and gives the
regular contribution �

∫
d3r2�p1 · Edip(r1|2)�(2;T)(1; 2) at k = 0. The second term can

be evaluated with the convolution theorem and the result (10) on the Fourier transform
�(2;T)(k; p1; p2). Its contribution is entirely singular because Ẽdip(k; p3)=−4�k̂(k̂ · p3).
From (13), the third term is equal in the limit k → 0 to the sum of the regular term
�
∫
d3�p1 · Edip(r1|3)�̃(3;T)0 (1; 3; p2) and of a singular term. The identi�cation of the

regular terms of the Fourier transform of Eq. (60), followed by a multiplication by
(p⊥ · p2) and an integration over the angles of p2 yields

(�(1))2
∫
d
2( p̂⊥ · p2)2h̃′0(p1 · p2) = �

∫
d2( p̂⊥ · p2)( p̂⊥ · Edip(r1|2))�(2;T)(1; 2)

+�
∫
d
2

∫
d3( p̂⊥ · p2)( p̂⊥ · Edip(r1|3))

× �̃(3;T)0 (1; 3; p2) : (62)

We completed the second step and, wonderfully enough, the right-hand side of this
equation is precisely what appears in the braces of Eq. (58)! We obtain therefore the
simple result I =(1− a�)�(1) ∫ d
2( p̂⊥ · p2)2h̃′0(p1 · p2). An integration by parts shows
furthermore that I = (1 − a�)�(1)

∫
d
2( p̂1 · p̂2)h̃0(p1 · p2). Using the relation (12)

between a and b, the formula (48) for the dielectric constant reduces eventually to

�= 1 +
3y

1− a� ; (63)

which is indeed identical to (30).

5. Conclusion

We have established, in a diagrammatic free way, that the constitutive relation of
macroscopic electrostatics holds in the rigid-dipole uid model. Our approach, based on
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hierarchy equations, leads to the new formula (48) for the dielectric constant and we
showed that it is equivalent to the well-known formula in terms of the direct correlation
function. We stress that the present study, like Ramshaw’s approach, does not give a
complete answer to the microscopic validation of macroscopic electrostatics. Indeed,
it remains to show that E(r) can be computed from the macroscopic equations. This
requires the analysis at a microscopic level of the surface charge density induced by
E0(r) on the boundaries.
The rigid-dipole uid model displays very rich physics and the present analysis

focuses only on a narrow part of it. A complete theory of this model would have
to discuss the crystalline phase, non-linear e�ects, time-dependent phenomena, etc: : : :
More complicated models of dielectrics can also be (and has also been) studied, such
as uids with polarizable molecules and higher multipole moments. In our opinion, a
very interesting development would be to carry the classical theory of linear dielectrics
to the quantum case. The molecules would then be described by quantum mechan-
ically bound charges, so that no arbitrary modelization of the molecules would be
necessary anymore. A major conceptual di�culty appears however from the fact that
the quantum system cannot be appropriately described as a collection of interacting
neutral molecules because of the inevitable presence of a tiny amount of free charges.
Although the total dipole moment of the system is still well de�ned, the concept of
the local polarization P(r), de�ned as the average dipole moment of a small cell, is
challenged because formally always equal to zero! It appears to us that the question
(b) should be rephrased in the quantum mechanical case to become: Do the micro-
scopic surface charge densities induced in a (quantum) dielectric indeed display, in
the appropriate regime, the macroscopic behavior predicted by classical electrostatics?
The dielectric properties of quantum matter is under current study by the authors and
Ph.A. Martin.
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Appendix A

We show in this appendix how Eq. (53) can be obtained from diagrammatic con-
siderations. In complete similarity with the Ursell function, the truncated three-body
density is given by the sum of all topologically di�erent irreducible graphs with 3 white
points numbered 1; 2; 3 and any number of black points, linked together by at most
one Mayer link f(i; j)=exp[−�uint(i; j)]− 1. An irreducible graph has no articulation
point, i.e. no point such that when removed, the graphs splits in several parts, one of
them consisting of only black points.
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The truncated three-body density therefore satis�es the equation

(A.1)

where K(1; 2; 3) is the sum of all graphs without any nodal point (black or white)
between the point 3 and the points 1, 2 (3 can be a nodal point) and c(1; 2) is the
direct correlation function (whose graphs do not contain nodal points). The last two
terms are necessary to take into account the case where 1 (resp. 2) is a nodal point and
3 is connected to it with a graph without any nodal point. For example, ◦3— ◦1 —◦2
is included in the one but last term while ◦1— ◦3 —◦2 belongs to K(1; 2; 3). The de-
composition (A.1) is indeed the graphical equivalent of Eq. (53). Notice that K(1; 2; 3)
is also given by (�(1))3�h(1; 2)=��(1)(3) because taking this functional derivative cor-
responds to whitening successively the black points of the Ursell function. Moreover,
the previous topological analysis implies that K(1; 2; 3) should decay with r3 at least
as |r1 − r3|−3|r2 − r3|−3.
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