
Master CompuPhys, University of Franche-Comté, semester 1
Academic year 2019-2020

Numerical project:
Heat diffusion in homogeneous and inhomogenous media

Author: Vincent Ballenegger
Institut UTINAM, Université de Franche-Comté (vincent.ballenegger@univ-fcomte.fr)

1 Project description
The aim of this project is to develop a program to simulate numerically the diffusion of heat inside
a metallic bar that is heated on one side. This bar can be homogeneous (made of a pure metal)
or inhomogeneous because built from an inhomogeneous mixture of two metals. In the case of a
homogeneous bar, the obtained numerical solution to the heat diffusion equation can be compared
with detailed experimental measurements on aluminium and copper bars. No such measurement exist
for inhomogeneous bars. This project has two goals:

1. Solve numerically the heat diffusion equation

∂

∂t
T (x, t) = α

∂2

∂x2T (x, t) (1)

(where α is the thermal diffusivity1) in a homogeneous bar to obtain the time-dependent tem-
perature profile T (x, t) along the bar and compare it with experimental heating curves for Al
and Cu bars. Discrepancies between the theoretical model and the experimental data should be
discussed and improvements in the employed model can be suggested and tested.

2. Determine, by solving numerically the heat diffusion equation in 3 dimensions, the thermal
behaviour of inhomogeneous bars in relation with their microscopic structure (grain size). The
inhomogeneous bars are built by compressing a mixture of copper and iron “grains” and can be
characterised by the typical size of the Cu and Fe domains. Iron happens to have a much lower
thermal diffusivity than copper.

Two models for the bar will be considered: a simple 1-dimensional model at first and then a more
general 3-dimensional model. The bar is assumed to have a rectangular cross-section. The 1d model
is expected to be sufficient for simulating the heat diffusion in homogenous bars, while the 3d model
will be necessary to study the influence of the size and distribution of the metallic domains. In this
project, the heat equation will be solved numerically by using the finite-difference method, where
the equation is discretized on a grid in time (with grid spacing ∆t) and in space (with grid spacings
∆x,∆y and ∆z).

2 Experiments on heat diffusion in Al and Cu bars
The experimental setup is shown in Figs. 1, 2 and 3. A metallic bar has an electric resistance integrated
on its left side that heats the bar by dissipating a power of 12 W (±0.4 W). The bar is isolated laterally
by a plastic encaging (thickness 5 mm) that surrounds it, apart for its lower surface which rests on a
circuit board with 8 temperatures sensors. The sealing between the plastic encaging and the circuit
board is air tight.The last 5.3 centimetres of the bar are not isolated and are located under a fan
which can be turned on or off at will. The bar with its insulating plastic is put inside a closed
metallic box. A computer program records, every second, the temperatures of the 8 sensors that

1See https://en.wikipedia.org/wiki/Thermal_diffusivity

https://en.wikipedia.org/wiki/Thermal_diffusivity

are in contact with the lower surface of the bar. Fig.5 shows the temperatures of the 7 last sensors
as function of time in various cases: Al and Cu bars, with or without air flow at the other bar
end. The corresponding raw data files for these temperature curves can can be downloaded from
http://perso.utinam.cnrs.fr/~ballenegger/Docs/Experimental_data.zip.

Figure 1: Experimental
setup to measure the diffu-
sion of heat in metallic bars.

Aluminium bar

Copper bar

Confining box (with thermal isolation and temperature sensors)
The lid can be opened, via screws, to put in a metallic bar. 8 temperature sensors  
in contact with the lower bar surface measure the temperature profile along the bar.

Electric resistance  
(to heat one end of the bar)

Fan
A fan can be turned on 
to cool one end of the bar

Controller
This device can measure
the electric power received
by the resistance and read
the 8 temperature sensors.

Figure 2: Circuit board inside the box showing
the temperature sensors.

7 mm
15 mm 15 mm 15 mm 15 mm 15 mm 15 mm

temperature sensors 20
 m

m

19.5 cm

15 mm30 mm

Insulating plastic that surrounds the bar

non-isolated end of the bar
located under the fan

electric resistance

Figure 3: Top view of the bar showing its dimensions, its isolation, and the positions of the temperature
sensors. The bar volume is 195× 20× 10 mm3.

3 Program specifications
Development environnement The programs must be written in thePython language. Numerical
librairies like numpy, scipy, matplotlib, etc. can be used if needed. The plots can be created with
matplotlib or with the plotting program Veusz.
Documentation can be found at
https://docs.python.org/
http://perso.utinam.cnrs.fr/~ballenegger/Docs/Python_Cheatsheet_2018.pdf
https://matplotlib.org
https://veusz.github.io

2

http://perso.utinam.cnrs.fr/~ballenegger/Docs/Experimental_data.zip
https://docs.python.org/
http://perso.utinam.cnrs.fr/~ballenegger/Docs/Python_Cheatsheet_2018.pdf
https://matplotlib.org
https://veusz.github.io

Copper bar
(with fan)

Te
m

pe
ra

tu
re

 (℃
)

20

30

40

50

60

70

80

Copper bar
(without fan)

Aluminium bar
(with fan)

Te
m

pe
ra

tu
re

 (℃
)

20

30

40

50

60

70
80

Time (s)
0 500 1000 1500 2000 2500

Aluminium bar
(without fan)

Time (s)
0 500 1000 1500 2000

Figure 4: Experimental results for the temper-
ature of the last 7 sensors for a copper bar (first
row of plots) or an aluminium bar (second row)
heated on one side by a power of 12 W; In the first
column of plots, a fan cools down the other end
of the bar, whereas this fan is switched off for the
second column of plots.

Version alpha
At this stage, only homogeneous bars made of pure aluminium or copper are considered. The develop-
ment starts by writing a program to compute numerically the solution of the heat diffusion equation
for a 1-dimensional model of the bar using the forward Euler scheme (see §6.5). A generalisation
to a 3d model is performed in a second stage. The programs should have the following features.

• Modelisation in 1d (program heat_1d.py)

1. (System definition) The initial temperature of the bar (in ◦C) is specified by a function T_initial(x)
defined in the code. At each end of the bar, that is at x = 0 or at x = L, the boundary condition
can be of the Dirichlet or of the Neumann type :

• A Dirichlet boundary condition correspond to keeping the temperature at the boundary
fixed at a constant value (denoted by TBC

0 at x = 0, resp. TBC
L at x = L).

• A Neumann boundary condition corresponds to keeping the derivative of the temperature
fixed at a constant value. Physically this corresponds to fixing the value of the heat flux
density2 φ(x, t) = −λ∂T

∂x at the border (the constant value is denoted by φBC
0 at x = 0,

resp. φBC
L at x = L). In the previous formula, which is Fourier’s law, λ is the thermal

conductivity of the medium.

A Neumann boundary condition at x = 0 can be used to account for the heat flux produced by the
electric resistance. A bar that is isolated at its other end can be modelled by setting a Neumann boundary
condition φ(end point, t) = 0. The case where air is blown on this end can be modelled at first by setting
a Dirichlet boundary condition, i.e. by assuming that the air flow keeps constant the temperature of the
end of the bar.

2. The program starts by printing on the screen all the relevant parameters of the simulation, for
instance:
System:
Bar length: ... cm
Bar width (length along y axis): 2 cm
Bar height (length along z axis): 1 cm
Material: copper
–> thermal diffusivity: alpha = ...
Left boundary condition: [Neumann] phi(x = 0, all t) = ... W/m2
Right boundary condition: [Dirichlet] T(x = L, all t) = ... degrees Celsius
Initial temperature profile T(x,0): [uniform] T = ... degrees
Simulation parameters:
Total simulation time: T = ... (s)
Nb of points for the discretisation in time: M = ...
Nb of points for the discretisation in space: N = ...
–> time step: delta_t = ...

2We recall that the heat flux φS is the energy per second crossing an orthogonal surface with area S. The SI units
of heat flux density φ are J s−1 m−2 = W m−2.

3

–> spatial grid spacing: deltaX = ...
etc.
All the relevant system and simulation parameters must be defined in easily identifiable variables at the
beginning of the code. Reasonable default values should be assigned to these variables for all allowed
uses of the program. Do not ask the user to enter values for the parameters via a python command
input("Enter a value: "). Switching from one type of boundary condition (BC) to another [at any
of the two ends of the bar] should be as easy as changing the value of a variable from 0 (representing the
use of a Dirichlet BC) to 1 (representing the use of a Neuman BC), knowing that default values for TBC

0 ,
TBC

L , jBC
0 , jBC

L must be defined in the code. These 4 values are of course not used all at the same time !

3. The program uses the forward Euler scheme (see §6.5) to solve numerically the heat diffusion
equation. The calculations are performed internally using reduced units (see §6.3). The user
can choose if the final results are shown in SI or in reduced units. Since the forward Euler scheme
is stable only when the Fourier number r = α∆t/∆x2 < 1/2 (the reader is encouraged to verify
that the numerical calculation does indeed diverge when r ≥ 1/2), the program checks the value
of r and stops immediately if its value is too large.

4. The program produces two main outputs:
• a color plot of the temperature inside the bar as function of time, similar to the one in

Fig.5. This plot is saved in a PDF file.
• a text file (named for instance Tsensors_sim.txt) containing the temperatures, as func-
tion of simulation time, at the 8 points where the temperature sensors are placed in the
experimental setup.

5. The program is validated by comparing the numerical solution to the analytical solution

T (x, t) = 1 + sin(πx) exp(−απ2t) (in reduced units) (2)

to the diffusion equation (10) for initial condition Tinitial(x) = 1+sin(πx) and Dirichlet boundary
conditions

T (0, t) = T (L, t) = 1 (for all t). (3)

The program computes the relative error

ε = |T − Tanalytic|
Tanalytic

(4)

of the numerical solution at the mid-point x = 1/2 when the temperature of this point should
have reached the value 3/2 according to the analytic solution, i.e. after a simulation time τ
defined by the condition T (1/2, τ) = 3/2.

6. (Comparison with experiments) Plots are produced to compare the simulation results, stored in
file Tsensors_sim.txt, with the corresponding experimental data. Are there systematic devia-
tions? Why? How could the model be improved, while keeping a 1-dimensional representation of
the bar?

1 11.
17

1.171.
33

1.33

1.
5 1.5

1.67

1.83

tim
e	
(in
	u
ni
t	o
f	T

0)

0

0.02

0.04

0.06

0.08

0.1

0.12

x	(in	unit	of	L0)
0 0.2 0.4 0.6 0.8 1

Figure 5: Temperature profile (in reduced units) along the
bar as function of time according to the analytical solution
(2) when α = 1. The temperatures are shown by a color scale
ranging from T = 1 (blue) to T = 2 (red).

4

• Modelisation in 3d (program heat_3d.py)

7. A program is written to solve, using the forward Euler scheme, the heat diffusion equation in
a homogeneous bar for a grid modelled in 3 dimensions, with grid size Nx, Ny, Nz. Since no
heat loss is modelled at this stage, the results of this program should coincide with those of the
program heat_1d.py if the energy flows only along the x direction.

Version beta

• Modelisation in 1d

8. The program heat_1d.py (or a new program heat_1d_implicit.py) can solve the heat diffusion
equation using the backward Euler scheme (see §6.5). The resulting tridiagonal linear system
of equations is solved using the Thomas algorithm (see §7))
Since this scheme is stable for any value of the Fourier parameter r, the restriction r < 1/2,
introduced in point 3. of the alpha version, can now be lifted.
→ What scheme (forward or backward Euler) is more efficient in terms of time of computation
when solving numerically the heat equation at high accuracy? And at low accuracy?
For this comparison, one can assume that both scheme provide in general the same accuracy
when using the same time step ∆t.

9. A Robin (or convection) boundary condition can be applied at any end of the bar.3 A Robin
condition at x = L corresponds to setting φ(L, t) = −λ∂T

∂x = h(T (L, t)− Troom) for all t, where
the coefficient h (in W m−2 K−1) is the convection coefficient4 at the bar-air interface.
→ Can we get a better agreement with some experimental curves when using a Robin boundary
condition ? With what value of the convection coefficient?

10. To check whether the heat loss by electromagnetic radiation is important in the experimental
setup, the program has an option to account for such losses.

11. (Numerical accuracy) The accuracy of the two integration schemes (forward or backward Euler)
is compared by plotting the measured relative error (4) as function of the time step ∆t (for ∆t
in the range 10−7 to 10−1 in reduced units), the grid spacing ∆x being kept fixed.
A log-log scale should be used for this plot. Interpretation of the results?

• Modelisation in 3d (program heat_3d.py)

12. The program is able to simulate inhomogeneous bars made up of a Cu and Fe domains with some
typical domain size d (this size is the same for the two kinds of metals). For simplicity, these
domains are assumed to occupy small cubic or parallelepiped volumes. The spatial distribution
of these domains can be either random or alternating (i.e. arranged as in a checkerboard).

13. A plot showing the average temperature of the end surface of the bar as function of time, for the
different microscopic structures considered, is produced and interpreted. The bar is subjected
to the same conditions as in the experimental setup, with the fan turned off.
→ What are the effective diffusivities of the inhomogeneous bars?

Version gold
A gold version of the programs or of the scientific analysis can have features like

• Integration of the heat equation using the Crank-Nicolson scheme.
3Since a Robin condition involves both the value of the function and its derivative at the boundary, it is sometimes

called a mixed boundary condition. See eq. (24) for the implementation of a boundary condition that sets the derivative
∂T
∂x

∣∣
L

= T ′(L) of the function to a given value (denoted u′N) which can depend itself on T .
4See https://en.wikipedia.org/wiki/Heat_transfer_coefficient

5

https://en.wikipedia.org/wiki/Heat_transfer_coefficient

• The numerical error ε of the various schemes obey to

ε = a∆t+ b(∆x)2 (forward Euler scheme)
ε = c∆t+ d(∆x)2 (backward Euler scheme)
ε = e(∆t)2 + f(∆x)2 (Crank-Nicolson scheme)

An analysis of the measured relative errors of the numerical solution is performed to determine
numerically the value of the coefficients a, b, c, d, e and f .

• Scientific analysis of the diffusion of heat in inhomogeneous media. For a bar made with 50%
copper and 50% iron, is it possible to get an effective heat diffusivity that is equal to 75% of the
one of copper by making a suitable choice of domain size and arrangement?

• The program for heat diffusion in 3 dimensions (heat_3d.py) is able to account for heat loss on
the surface by radiation or convection.

4 Development constraints
• The Thomas algorithm, which will be used to solve tridiagonal linear system of equations, must

be programmed in a function that is well decoupled from the main program. This function
should be tested on a simple system, for instance

1 8 0 0
2 3 7 0
0 4 5 9
0 0 6 10

 ·

x1
x2
x3
x4

 =

1
2
3
4

 (5)

whose solution is (x1, x2, x3, x4) = (94,−7,−13, 23) · 1
38 . The program that runs this test must

be provided.

• Care should be taken to ensure that the various programs are easily readable by a human.

5 Scientific exploitation
In addition to the programs to be written in accordance with the previous specifications, a scientific
exploitation of the numerical results must be realised. Several scientific questions have been asked in
particular in the section detailing the program specifications. All plots must of course be correctly
labelled and the observed phenomena must be briefly commented and interpreted. The size d of
the Cu or Fe domains should be chosen so that interesting phenomena are observed while keeping a
reasonable computation cost for the simulation.

6 Physical notions and methods necessary to the project

6.1 Fourier’s law and the heat equation

The heat flux density is denoted by ~φ(~r, t). In SI its units are watts per square metre (W m−2).
Fourier’s law states that

~φ(~r, t) = −λ~∇T (~r, t), (6)

where T is the temperature and λ (sometimes denoted k) is the thermal conductivity.

6

https://en.wikipedia.org/wiki/Heat_flux

Heat diffusion equation For diffusion along a single direction, this equation reads (see e.g. the
derivation in wikipedia)

∂

∂t
T (x, t) = α

∂2

∂x2T (x, t) + f̃(x, t) (7)

where α = λ/(ρcp) is the thermal diffusivity, cp is the specific heat capacity and ρ is the density (mass
per unit volume). The source and sink term is defined as f̃(x, t) = f(x, t)/(ρcp) where f(x, t) is the
amount of heat lost or received per unit time and per unit volume (the SI unit of f is W m−3).

In 3 dimensions, for a medium with a thermal conductivity λ = λ(~r) that can be non-uniform, the
heat equation becomes

∂

∂t
T =

[
div(λ(~r)~∇T) + f

] 1
ρcp

. (8)

or more explicitely, in cartesian coordinates,

∂

∂t
T =

[
∂

∂x

(
λ
∂

∂x
T

)
+ ∂

∂y

(
λ
∂

∂y
T

)
+ ∂

∂z

(
λ
∂

∂z
T

)
+ f

] 1
ρcp

. (9)

In the medium is homogeneous (uniform thermal conductivity λ), the heat equation simplifies into
∂
∂tT = α∇2T + f̃ , that is, in cartesian coordinates,

∂

∂t
T (x, y, z, t) = α

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
T (x, y, z, t) + f̃(x, y, z, t). (10)

6.2 Black body radiation

The total power radiated by a body at thermal equilibrium at temperature T is AσT 4, where σ is the
Stefan-Boltzmann constant and A is the surface area of the body. An object receives also energy from
the electromagnetic radiation emitted by the surrounding objects that are at temperature Troom, i.e.
it receives the power AσT 4

room. Such energy gain or loss can be accounted for the source/sink term
f̃(x, t) in the diffusion equation (7).

6.3 Reduced units

Let T0 be a characteristic temperature, L0 a characteristic length and t0 a characteristic time. In
terms of the reduced quantities

T ∗ = T/T0, x∗ = x/L0, t∗ = t/t0, (11)

the heat equation (7) becomes

∂

∂t∗
T ∗ = α∗

∂2

∂x∗2
T ∗ + f̃∗ (12)

where

α∗ = α
t0
L2

0
and f̃∗ = t0

ρcpT0
f. (13)

are dimensionless coefficients. Notice that by choosing suitably the unit of length L0 and the unit of
time t0, one can always set α∗ = 1. The program should use, internally, reduced units though we have
dropped the notation with a star in all following formulae.

6.4 Discretisation via finite differences

A partial differential equation, like the heat equation, can be discretized on a grid. Let us consider a
one-dimensional grid with N + 1 points and grid spacing ∆x. The ith point has cartesian coordinate
xi = i∆x (i = 0, ..., N). We denote by ui the value of a function u(x) at the point xi: ui = u(xi) =
u(i∆x).

7

https://en.wikipedia.org/wiki/Heat_equation

The first derivative of a function u(x) can be estimated numerically by one of the following formulas

∂u

∂x

∣∣∣∣
i

'

ui+1 − ui

∆x (forward finite difference) (14a)

ui − ui−1
∆x (backward finite difference) (14b)

ui+1 − ui−1
2∆x (centred finite difference of step 2∆x) (14c)

ui+ 1
2
− ui− 1

2

∆x (centred finite difference of step ∆x involving off-grid points) (14d)

The second derivative can be approximated by applying twice eq. (14d):

∂2u

∂x2

∣∣∣∣
i

'

∂u

∂x

∣∣∣
i+1/2

− ∂u

∂x

∣∣∣
i−1/2

∆x ' ui−1 − 2ui + ui+1
(∆x)2 . (15)

6.5 Integration schemes

When discretising the heat diffusion equation with finite differences, several schemes can be devised
to perform the time integration of this equation.
The time is discretised on a grid made with M + 1 points and grid spacing ∆t. We let tn = n∆t. The
value of a function u(x, t) at position and time (xi, tn) is denoted by

un
i = u(xi, tn) = u(i∆x, n∆t), (for i = 0, ..., N and n = 0, ...,M), (16)

i.e. spatial positions are indicated in subscript and time is denoted in superscript.

• Forward Euler scheme

Applying formula (14a) to the time derivative and formula (15) to the second derivative ∂2T
∂x2 in eq. (7)

leads to

un+1
i − un

i

∆t = α
un

i−1 − 2un
i + un

i+1
(∆x)2 + f̃n

i (17)

where u = T denotes the temperature and f̃ = f/(ρcp) = fα/λ. Therefore:

un+1
i = un

i + r
(
un

i−1 − 2un
i + un

i+1
)

+ f̃n
i ∆t (i = 1, ..., N − 1) (18)

where

r = α
∆t

(∆x)2 . (19)

Given the temperature un
i (i = 0, ..., N) of the medium at time tn, the temperatures at time

tn+1 = tn +∆t can be calculated by applying eq. (18) at all internal points of the grid. The solution
to the heat equation is therefore constructed by applying repeatedly this time propagation step,
starting from the initial temperature profile u0

i = Tinitial(xi).

This integration scheme is explicit: the temperatures in the medium at the next time step are given
by explicit formulas that depend only on the temperatures at the previous time step (and on the
heat generation or loss term f if it doesn’t vanish) . This scheme is stable only if r < 1/2. The
generalisation of this scheme to the diffusion equation in 3 dimensions is straightforward:

un+1
i,j,k = un

i,j,k + r(un
i−1,j,k − 2un

i,j,k + un
i+1,j,k)

+ r(un
i,j−1,k − 2un

i,j,k + un
i,j+1,k)

+ r(un
i,j,k−1 − 2un

i,j,k + un
i,j,k+1) + f̃n

i,j,k∆t (i = 1, ..., N − 1) (20)

8

Boundary conditions The end points x = 0 and x = L need to be treated separately. If Dirichlet
boundary conditions are used, the situation is trivial since the value of the function at the end points
(u0 and uN) stay unchanged at all times. To implement a Neumann boundary condition at (say)
x = 0, i.e. a fixed value u′0 for the gradient ∂u

∂x

∣∣
x=0, one could write, using eq. (14a),

un
1 − un

0
∆x = u′0, (21)

(u′0 = 0 for an insulating boundary condition) and calculate therefore the new value of the function at
the boundary via un+1

0 = un+1
1 −u′0∆x. This is however suboptimal and a better way of implementing

a Neumann boundary condition is to apply eq. (14c) at the boundary point i = 0, i.e.

un
1 − un

−1
2∆x = u′0 , =⇒ un

−1 = un
1 − u′02∆x (22)

together with eq. (18) for i = 0 in which un
−1 is replaced by the above value. This leads to

un+1
0 = un

0 + r (2un
1 − 2u′0∆x− 2un

0) + f̃n
0 ∆t (Neumann BC for point i = 0) (23)

Similarly

un+1
N = un

N + r
(
2un

N−1 + 2u′N ∆x− 2un
N

)
+ f̃n

N ∆t (Neumann BC for point i = N) (24)

Eqs. (23) and (24) apply to end points along the x axis in a one-dimensional model of diffusion.
The generalisation to end points along the y or z axis is straightforward and is performed as in the
generalisation of eq. (18) into eq. (20).

In the case of an inhomogeneous system, one applies eq. (18) [or eq. (20) in 3d] with the local
thermal diffusivity. For a point i located at the interface between two media with thermal diffusivities
α1 and α2, eq. (18) is generalised into

un+1
i = un

i + r1u
n
i−1 − (r1 + r2)un

i + r2u
n
i+1 + f̃n

i ∆t (25)

where ri = αi∆t/(∆x)2.

• Backward Euler scheme

In this scheme, one discretises the heat eq. (7) at time tn+1 by applying formula (15) to the second
derivative and formula (14b) to the time derivative. This leads to the equation

un+1
i − un

i

∆t = α
un+1

i−1 − 2un+1
i + un+1

i+1
(∆x)2 + f̃n+1

i . (26)

Moving the unknowns quantities to the left hand side of the equation gives

un+1
i − r

(
un+1

i−1 − 2un+1
i + un+1

i+1

)
= un

i + f̃n+1
i ∆t (i = 1, ..., N − 1) (27)

If Dirichlet boundary conditions are used, the temperatures u0 = u0
0 and uN = u0

N at the end points
are known at all times. Eq. (27) provides then a system of N − 1 linear equations for the N − 1
unknowns temperatures {un+1

i } of the inner points. This scheme is called implicit because equations
must be solved to find the “new” values of the function. Denoting these unknown temperatures by a
vector

~uint =

 u1
...

uN−1

 , (28)

9

the system of equations (27) can be written in matrix form

1 + 2r −r 0
−r

.
. −r0 −r 1 + 2r

~un+1

int = ~un
int + ~̃fn+1

int ∆t+ r

u0
0
...
0
uN

 (29)

In this scheme, the temperatures in the medium at time tn+1 = tn + ∆t are thus calculated from the
temperatures at time tn by solving this linear system of equations.
If Neumann boundary conditions are used and implemented in the form

un+1
0 = un+1

1 − u′1∆x (30)
un+1

N = un+1
N−1 + u′N ∆x (31)

with u′1 and u′N fixed (=0 for an insulating boundary condition), the system of equations becomes

1 + r −r 0
−r 1 + 2r . . .

.
. . . 1 + 2r −r0 −r 1 + r

· ~un+1

int = ~un
int + ~̃fn+1

int ∆t+

−ru′1∆x

0
...
0

ru′N ∆x

 (32)

The backward Euler scheme is stable for any value of r.

• The Crank-Nicolson method

The Crank-Nicolson method is a combination of the forward Euler method at time tn and of the
backward Euler method at time tn+1 and is explained in wikipedia. For convenience, we write below
the time propagation formula for the Crank-Nicolson method in matrix form in the case of Dirichlet
boundary conditions:

1 + 2r̃ −r̃ 0
−r̃

.
. −r̃0 −r̃ 1 + 2r̃

~un+1

int = ~un
int+

∆t
2 (~̃fn

int+
~̃fn+1
int)+r̃

u0

0
...
0
uN

+r̃

un
0 − 2un

1 + un
2

...
un

i−1 − 2un
i + un

i+1
...

un
N−2 − 2un

N−1 + un
N

(33)

where r̃ = r/2.

7 Algorithms
The Python package numpy contains generic functions, for instance numpy.solve(), to solve linear
systems of equations. Since the system of interest [see eq. (29)] is tridiagonal, it is better to use a
method optimised for tridiagonal systems, namely the Thomas algorithm, which is well explained in
wikipedia.

10

https://en.wikipedia.org/wiki/Crank\T1\textendash Nicolson_method
https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

	Project description
	Experiments on heat diffusion in Al and Cu bars
	Program specifications
	Development constraints
	Scientific exploitation
	Physical notions and methods necessary to the project
	Fourier's law and the heat equation
	Black body radiation
	Reduced units
	Discretisation via finite differences
	Integration schemes

	Algorithms

