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ABSTRACT

Context. Thermal evolution models have been developed over the years to investigate the evolution of thermal properties based on
the transfer of heat fluxes or transport of gas through a porous matrix, among others. Applications of such models to trans-Neptunian
objects (TNOs) and Centaurs has shown that these bodies could be strongly differentiated from the point of view of chemistry (i.e. loss
of most volatile ices), as well as from physics (e.g. melting of water ice), resulting in stratified internal structures with differentiated
cores and potential pristine material close to the surface. In this context, some observational results, such as the detection of crystalline
water ice or volatiles, remain puzzling.
Aims. In this paper, we would like to present a new fully three-dimensional thermal evolution model. With this model, we aim to
improve determination of the temperature distribution inside icy bodies such as TNOs by accounting for lateral heat fluxes, which
have been proven to be important for accurate simulations. We also would like to be able to account for heterogeneous boundary
conditions at the surface through various albedo properties, for example, that might induce different local temperature distributions.
Methods. In a departure from published modeling approaches, the heat diffusion problem and its boundary conditions are represented
in terms of real spherical harmonics, increasing the numerical efficiency by roughly an order of magnitude. We then compare this
new model and another 3D model recently published to illustrate the advantages and limits of the new model. We try to put some
constraints on the presence of crystalline water ice at the surface of TNOs.
Results. The results obtained with this new model are in excellent agreement with results obtained by different groups with various
models. Small TNOs could remain primitive unless they are formed quickly (less than 2 Myr) or are debris from the disruption of
larger bodies. We find that, for large objects with a thermal evolution dominated by the decay of long-lived isotopes (objects with
a formation period greater than 2 to 3 Myr), the presence of crystalline water ice would require both a large radius (>300 km) and
high density (>1500 kg m−3). In particular, objects with intermediate radii and densities would be an interesting transitory population
deserving a detailed study of individual fates.

Key words. Kuiper belt: general – diffusion – methods: numerical

1. Introduction

Trans-Neptunian objects (TNOs) and Centaurs are generally as-
sumed to be pristine remnants of planets formation, thus holding
clues to the early stages of the solar system evolution. However,
it is still debated whether this assumption is correct and to what
extent TNOs remain primitive. Observations are constantly car-
ried out to investigate their surface properties (mainly composi-
tion and color) and physical parameters (such as size, mass, or
rotation period), which is a difficult task owing to their great he-
liocentric distances and their resulting faintness (Barucci et al.
2008a).

The TNOs’ albedos and sizes can be constrained by ther-
mal observations (Stansberry et al. 2008, and references therein).
Masses and densities can be obtained by observing multiple sys-
tems (Noll et al. 2008, for a review). Some rotation periods and

shapes have been determined through photometric lightcurves
(Sheppard et al. 2008). When it comes to surface properties,
broadband photometry has revealed a wide range of colors dis-
played by both TNO and Centaur populations (Doressoundiram
et al. 2008; Tegler et al. 2008). Near-infrared spectroscopy has
highlighted the variety of their surface compositions (Barucci
et al. 2008b, for a review), as well as the presence of volatile
ices (Cook et al. 2007; Barucci et al. 2008c).

These properties are commonly interpreted as the result of
the competition between internal and external processes that
alter the surfaces. Irradiation, for instance, causes the forma-
tion of a crust that shields the material underneath (Strazzulla
et al. 1991; Brunetto & Roush 2008). Impact collisions can
thus expose less irradiated material. Internal processes, such
as comet-like activity or cryovolcanism, can act the same way
by redepositing fresh, non-irradiated material on the surface
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(Belton & Melosh 2009). Some Centaurs effectively display
cometary activity (Jewitt 2009), while it has only been suspected
once (and never confirmed) on a TNO (Hainaut et al. 2000).
Studying the thermal evolution of such objects could constrain
the possibility of internal events (for example cometary activity)
in the recent past, of which the effects on the surface composi-
tions and colors could still be observable today.

Thermal simulations of icy bodies have been developed over
the years to investigate the evolution of thermal properties based
on the transfer of heat flux, the sublimation of ices, and the
transport of gas through a porous matrix. Initially, 1D models
of the heat diffusion equation and gas transport were developed
with specific applications to comet nuclei, especially in the wake
of the Giotto exploration of comet 1P/Halley (e.g. Fanale &
Savail 1984; Herman & Podolak 1985; Espinasse et al. 1991;
see Huebner et al. 2006, for a review). Over the last decade, more
complexities were introduced, with a particular emphasis on ac-
counting for the lateral conduction of heat toward a 3D resolu-
tion of the equations for spherical bodies (Enzian et al. 1997;
Orosei et al. 1999; Cohen et al. 2003; Rosenberg & Prialnik
2007) and the nonspherical shapes of comet nuclei (Lasue et al.
2008).

The application of thermal evolution models to TNOs and
Centaurs has shown that, after their formation and early evolu-
tion, the resulting bodies could almost be completely depleted
of most volatile ices (DeSanctis et al. 2001; Merk & Prialnik
2006; McKinnon et al. 2008). Water ice could have completely
crystallized or even melted, leading to a layered structure with a
core depleted in pristine material and less processed outer layers.
Since thermal evolution depends strongly on the object’s size,
composition, and the abundance of radioactive isotopes, some
amorphous ice could be preserved, and entire or partly primi-
tive bodies can remain (differentiated cores and primitive outer
layers).

Lateral heat fluxes are crucial to determining of the temper-
ature distribution at the surface and inside icy bodies (Enzian
et al. 1997). Orosei et al. (1999) compared results obtained with
a 1D with those from a 2D model, and show that latitudinal
heat conduction diverts energy from the equator to the poles,
resulting in a lower equatorial temperature when the object is at
perihelion. Some differences also appear in the longterm evolu-
tion of the surface average annual temperature, which increases
at all latitudes from orbit to orbit. This pattern is completely
absent from the results of the 1D model. Therefore, nonradial
heat conduction can be the origin of a significant difference in
the long-term evolution of a body, especially when it comes
to temperature-dependent processes, such as the crystallization
of amorphous ice or the sublimation/condensation of volatiles
within the porous matrix. The chemical differentiation induced
by solar illumination seems to be overestimated in 1D models.

An effort has thus been made to develop fully 3D models
which are expected to give better constraints on the thermal evo-
lution of icy bodies through more realistic treatment of inso-
lation at the surface, and its effect on subsurface layers. These
models can also account for a more realistic and complex treat-
ment of the boundary conditions, such as heterogeneous albedo
distribution at the surface. However, a realistic 3D model needs
to solve the various equations simultaneously for all the elements
of the 3D grid, which dramatically increases the computational
time. Simplifications of the physical processes involved, there-
fore, must be made. For example, the gas production and flow in
the interior of the bodies is not accounted for by Rosenberg &
Prialnik (2007).

We developed an innovative 3D thermal evolution model us-
ing a mathematical formulation in spherical harmonics that re-
duces the computation time. By doing this, we expect to be able
to increase the spatial resolution of the grid to improve the tem-
perature determination, in particular for objects close to the Sun.
The basic equations and the algorithm are described in Sect. 2,
and physical parameters relevant to the modeling of TNOs and
Centaurs are outlined in Sect. 3. Section 4 discusses the approx-
imations and the validation of the model. Section 5 discusses
the question of the presence/absence of amorphous and/or crys-
talline water ice at the surface of these objects.

2. Basic equations

2.1. Heat diffusion equation

We aim to evaluate the temperature distribution inside icy bodies
such as TNOs and Centaurs, taking various thermal and physical
processes into account such as the decay of radioactive isotopes
and the exothermic crystallization of amorphous ice. We assume
that the bodies are spheres made of porous water ice (amor-
phous and/or crystalline) and dust (silicates), homogeneously
distributed within the ice matrix. Heat diffusion is computed
for the three dimensions of the sphere: radial, latitudinal, and
azimuthal. Sublimation/condensation of volatiles and gas flow
in the porous matrix are not accounted for in the current ver-
sion of the model. The heat conduction equation to be solved is,
therefore,

ρbulkc
∂T
∂t
+ div(−κ −−−→grad T ) = S, (1)

where T [K] is the temperature distribution to be determined,
ρbulk [kg m−3] the object’s bulk density, c [J kg−1 K−1] the ma-
terial heat capacity, κ [W m−1 K−1] its effective thermal conduc-
tivity and S the total heat source (see Sect. 2.3).

The heat diffusion equation can be expanded in spherical
coordinates:

ρbulkc
κ

∂T
∂t
−

(
2
r
+

1
κ

∂κ

∂r

)
∂T
∂r
− ∂

2T
∂r2
− 1

r2
Δθ,ϕT =

S
κ
, (2)

with Δθ,ϕ the angular Laplacian operator, by neglecting the angu-
lar derivative of κ, ρbulk and c (see Sect. 3.3). We introduce spher-
ical harmonics that allow a simple and natural expression of the
temperature over a regular spherical grid. This has been used for
the Earth and the Moon (Wierczorek 2007). Real spherical har-
monics Ylm(θ, ϕ) with θ ∈ [0, π] the colatitude and ϕ ∈ [0, 2π]
the longitude form an orthonormal basis of the Hilbert space of
real-valued square integrable functions. Each spherical harmonic
of degree l (l ∈ N) and order m (m ∈ Z, |m| ≤ l) is an eigen-
function of the angular Laplacian operator, associated with the
eigenvalue −l(l + 1). They are defined as follows:

Ylm(θ, ϕ) = αlmPm
l (cos θ)Φm(ϕ), (3)

with αlm the orthonormalization coefficient, Pm
l the Legendre

polynomials and Φm(ϕ) the azimuthal function.
As a result, the expansion of the temperature on the basis of

the real spherical harmonics gives

T =
∞∑

l=0

l∑
m=−l

T lm(t, r) Ylm(θ, ϕ), (4)

which is exact as long as the degree l goes to infinity.
Nonetheless, this ideal case cannot be reached for numerical rea-
sons. We thus introduce a maximum degree lmax to cut the sum.
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The influence of this choice is discussed in Sect. 4.1. We then
introduce the expansion in the heat diffusion equation:

ρc
κ

∂T lm

∂t
−

(
2
r
+

1
κ

∂κ

∂r

)
∂T lm

∂r
− ∂

2T lm

∂r2
+

l(l + 1)
r2

T lm = Slm, (5)

with Slm described in Sect. 2.3. We therefore obtain (lmax +
1)2 equations of T lm(t, r), instead of one single 3D equation of T .
These 1D equations are solved using a Crank-Nicholson numer-
ical scheme, which is a stable, implicit technique.

2.2. Grid and boundary conditions

The body is virtually divided into elementary volumes by assum-
ing a 3D-grid defined in the (r, θ, ϕ) spherical frame of reference,
with θ ∈ [0, π] the colatitude and ϕ ∈ [0, 2π] the longitude. The
radial grid is chosen so as to minimize the discretization errors,
with several samples near the surface, where the thermal gra-
dients are strong: a thickness of a few centimeters is assumed
for the first 100 layers (for example 0.5 cm for the first layer,
then a linear increase in each layer thickness). This technique
has already been used to model comet nuclei. The layers close
to the surface suffer the largest variations in temperature on a
small spatial scale from the solar illumination, with a skin depth
of a few tens of centimeters (Huebner et al. 2006). In this case,
the subsurface layers have usually a thickness of the order of a
centimeter.

The sampling of the lateral 2D-(θ, ϕ) grid is constrained by
using spherical harmonics, in particular the sampling theorem
(Driscoll & Healy 1994) for the surface boundary condition (see
Eq. (9)). Several thermal processes are considered to evaluate
the thermal balance:

� solar illumination described by (1 − A) C�
d2

H
cos ξ, with A the

Bond albedo, C� the solar constant, dH the object’s heliocen-
tric distance, and ξ the local zenith angle.

� thermal emission εσT 4, with ε material emissivity, σ the
Stefan-Boltzmann constant, and T the temperature.

� lateral and radial heat fluxes.

The thermal balance at the surface is determined through a 3D

heat flux
−→
Φ, and can be written as

ρbulkc
∂T
∂t
+ div(

−→
Φ) = 0 =⇒ ρbulkc

∂T
∂t
+

[
2
r
ΦR +

∂ΦR
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]
R

+

[
1

r tan θ
Φθ +

1
r
∂Φθ
∂θ

]
R

+

[
1

r sin θ

∂Φϕ

∂ϕ

]
R

= 0 (6)

with
−→
Φ the heat flux composed of Φr the radial heat flux, and Φθ

and Φϕ the lateral heat fluxes. The last are evaluated using the
nearest neighbor’s temperature. We consider for the radial flux a
surface layer of thickness δr that should be very small to allow
an accurate approximation of the derivative. The radial heat flux
is thus computed as

Φr =
1
2

⎛⎜⎜⎜⎜⎝εσT 4 − (1 −A)
C�
d2

H

cos ξ − κΔT
δr

⎞⎟⎟⎟⎟⎠ , (7)

with T [K] the temperature at the surface point for which the
thermal balance is computed, and ΔT the temperature difference
across the surface layer. This thermal balance is computed si-
multaneously for each point of the 2D grid to obtain the surface
temperature distribution Tsurf(θ, ϕ).

This is then expanded on the basis of spherical harmonics,
and the coefficients T lm

surf of this expansion are used as the bound-
ary conditions for Eq. (5):

T lm
surf =

∫ 2π

0

∫ π

0
Tsurf(θ, ϕ) Ylm(θ, ϕ) sin θ dθ dϕ. (8)

We used the sampling theorem developed by Driscoll & Healy
(1994) to derive these coefficients from the equilibrium temper-
ature of the surface. Denoting N the number of points on one
direction of the equally sampled surface grid, the boundary con-
ditions T lm

surf are computed as

T lm
surf =

N−1∑
j=0

N−1∑
k=0

aN/2
j Tsurf(θ j, ϕk) Ylm(θ j, ϕk), (9)

with θ j =
jπ
N , ϕk =

2kπ
N the grid points coordinates, aN/2

j a co-
efficient that accounts for the over-sampling near the poles,
and Tsurf [K] the equilibrium temperature at each point on the
surface. The number of points N in one angular direction is de-
termined by the heliocentric distance of the object (large num-
ber of samples for close objects to minimize the discretization
errors) and the computational load (see Sect. 4.1).

In the center, the boundary condition is simpler and only de-
pends on r:

∂T (t, r, θ, ϕ)
∂r

= 0

=⇒ ∀(l,m) ∈ N × Z, |m| � l,
∂T lm(t, r)

∂r
= 0. (10)

The (lmax+1)2 Eq. (5) of T lm are thus coupled by the use of these
boundary conditions.

2.3. Heat sources

Experimental work by Schmitt et al. (1989) and subsequent
cometary simulations have recognized crystallization of water
ice as a major contributor to the activity of cometary bodies.
Recent work by Jewitt (2009) on active Centaurs suggests that
the crystallization of water ice may be the main driver of their
activity. This heat source is described by

Qcryst = λ(T ) �a Hac, (11)

with �a [kg m−3] the amorphous water ice bulk density. The
phase transition releases a latent heat Hac = 9 × 104 J kg−1

(Klinger 1981) at a rate from Schmitt et al. (1989):

λ(T ) = 1.05 × 1013 e−5370/T s−1. (12)

Heat released upon decay of radioactive isotopes such as 26Al
have long been recognized as an important heat source for so-
lar system bodies (Urey 1955). We consider several short- and
long-lived isotopes in this model (Table 1, values adapted from
Castillo-Rogez et al. 2007, and ref. therein), commonly used in
the thermal modeling of icy objects in the solar system. We con-
sider two other short-lived radioactive isotopes than 26Al−60Fe
and 53Mn− with the aim of evaluating their influence on the
initial differentiation. These internal heat sources can be de-
scribed by

Qrad =
∑
rad

�d Xrad Hrad
1
τrad

exp

( −t
τrad

)
, (13)
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Table 1. Physical parameters of short-period (SP) and long-period (LP)
radioactive isotopes considered in the model.

Isotopes Xrad
τrad Hrad

(years) J kg−1

S
P

26Al 6.7 × 10−7 1.05 × 106 4.84 × 1012

60Fe 2.5 × 10−8/−7 2.16 × 106 5.04 × 1012

53Mn 2.8 × 10−8 5.34 × 106 4.55 × 1012

L
P

40K 1.2 × 10−6 1.80 × 109 1.66 × 1012

232Th 6.0 × 10−8 2.02 × 1010 1.68 × 1013

235U 9.0 × 10−9 1.02 × 109 1.82 × 1013

238U 2.9 × 10−8 6.45 × 109 1.92 × 1013

Notes. Xrad: initial mass fraction – note that there are two values for
60Fe, τrad: mean lifetime, Hrad: heat released per unit mass.

with �d the dust bulk density [kg m−3], Xrad the initial mass frac-
tion of a considered isotope in the dust, Hrad [J kg−1] the heat
released per unit mass upon decay, τrad [s] the decay time (see
Table 1), and t the time.

The initial abundance of radioactive isotopes is crucial for
evaluating the thermal evolution of TNOs and Centaurs. The
presence of these radioactive isotopes in the protoplanetary disk
is constrained by the abundances of daughter isotopes contained
in meteoritic material such as CAIs or chondrites. In particu-
lar, the presence of short-lived 60Fe is deduced from the pres-
ence of 60Ni, and its abundance has not been well constrained
yet (Gounelle & Meibom 2008). We thus have two limit val-
ues for its mass fraction, which are subject to modifications as
more accuracy is applied to our knowledge of the 56Fe/60Fe ratio
(Gounelle et al. 2009).

The heat source term S = Qrad + Qcryst also has to be ex-
panded on the basis of spherical harmonics. As dust is assumed
to be homogeneously distributed within the icy matrix, the heat
released upon radioactive decay should also be homogeneous in
the body. We also assume that crystallization is a phenomenon
that depends only on r because of the homogeneous material dis-
tribution in each layer (see Sect. 3.3). Therefore,S only depends
on t and r, and the expansion gives

S =
lmax∑
l=0

l∑
m=−l

Slm Ylm(θ, ϕ), Slm =
√

4π S δl,0 δm,0, (14)

where δl,0 and δm,0 are Kronecker functions. These Slm should
be applied in Eq. (5).

3. Physical parameters relevant to TNOs

3.1. Bulk composition, heat capacity, and thermal
conductivity

TNOs and Centaurs are generally assumed to have a comet-like
composition thanks to the dynamical link between those popula-
tions (for a review see Coradini et al. 2008, and ref. therein). The
relative mass fractions of water ice and dust should therefore be
about 1:1 (Huebner et al. 2006). Nonetheless, TNOs display a
wider range of densities than comets, from less than 1 g cm−3

to more than 2 g cm−3 (Sheppard et al. 2008), while cometary
densities rarely exceed 1 g cm−3 (Blum et al. 2006), implying
a wider range of porosity in TNOs compared to comet nuclei.
The bulk density of comets, TNOs, and Centaurs is related to

Table 2. Heat capacities and thermal conductivities.

Param. Value Unit Ref.

cH2O 7.49T + 90 J kg−1 K−1 G&S36
cd 1200 J kg−1 K−1 E&S83
κa 2.34 × 10−3T + 2.8 × 10−2 W m−1 K−1 Kl80
κcr 567/T W m−1 K−1 Kl80
κd 4.2 W m−1 K−1 E&S83

Notes. cH2O for water ice and cd for dust, κa and κcr for amorphous and
crystalline water ice, respectively.

References. G&S36: Giauque & Stout (1936), E&S83: Ellsworth &
Schubert (1983), Kl80: Klinger (1980).

the porosity of the solid matrix ψ by the following equation:

ρbulk = (1 − ψ)

(
XH2O

ρH2O
+

Xd

ρd

)−1

, (15)

with XH2O and Xd the mass fractions of water ice and dust, re-
spectively, and ρH2O and ρd [kg m−3] the densities of water ice
and dust respectively.

The heat capacity of the mixture is obtained by computing
the average of the values weighted by the mass fraction of each
component:

c = XH2OcH2O + Xdcd, (16)

with XH2O and Xd the mass fraction of water ice and dust, and
cH2O and cd [J kg−1 K−1] the heat capacities of each component.
The numerical values used in this work can be found in Table 2.

The evaluation of the mixture thermal conductivity κ
[W m−1 K−1] is difficult, since it depends on the material struc-
ture, the very different nature of components, and the porosity.
However, we can assume that its value should be intermediate
between the thermal conductivity of all components and that it
should depend on the volume fraction of each. We also know
that the porosity and granularity of the medium reduce the ther-
mal conductivity, but it is unclear how and to what extent. We
therefore consider the material as made of two phases, the pores
and the solid matrix. The solid matrix thermal conductivity κs is
computed as an average of each component’s thermal conduc-
tivity (see Table 2), weighted by its volume fraction:

κs = xH2O [(1 − Xcr)κa + Xcrκcr] + xdκd, (17)

with xH2O and xd the volume fractions of water ice and dust,
respectively, and Xcr the mass fraction of crystalline water ice.

Within the empty pores the heat is transferred through ther-
mal radiation:

κp = 4rpεσT 3, (18)

with rp the average pore radius taken as 1 μm, ε the medium
emissivity, σ the Stefan-Boltzmann constant, and T the temper-
ature in K (Huebner et al. 2006). The pores should be about the
same size as the icy grains for a mean density of 500 kg m−3

(Huebner et al. 2006). We consider then the Hertz factor h, which
is a correction factor to account for the granular structure of the
solid. It should be applied to κs before correcting for the ef-
fects of porosity. Its value can vary from 10−4 to 1 (Huebner
et al. 2006) due to sintering: we choose a constant value of 0.1,
typically used for the simulation of comet thermal evolution
(e.g. Huebner et al. 2006).
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Table 3. Generic physical and orbital parameters considered for the
nominal object.

Parameter Symbol Value
Radius R 50 km
Mass fractions Xd/XH2O 1
Porosity ψ 30%
Bulk density ρbulk 1020 kg m−3

Heat capacity c 7.6 × 102 J kg−1 K−1

Thermal conductivity κ 6 × 10−2 W m−1 K−1

Hertz factor h 0.1
Formation delay tF 1 × 106 yrs
Initial temperature Tinit 30 K
Bond albedo A 10%
Emissivity ε 0.9
Semi-major axis a 45 AU
Eccentricity e 0.2
Rotation period Prot 10 h
Revolution period Prev 300 yrs
Obliquity o 20 deg

Finally, Shoshany et al. (2002) show that κp becomes pre-
dominant only for high values of the porosity (ψ > 0.7), so that
generally κp � κs. In this case, we can use the Russel formula
(Russel 1935) to calculate a correction factor φ that should be
applied to κs, to account for the effects of porosity (Espinasse
et al. 1991; Coradini et al. 1997; Orosei et al. 1999). It depends
on the porosity ψ, and the ratio f =

κp

κs
:

φ =
ψ2/3 f + (1 − ψ2/3)

ψ − ψ2/3 + 1 − ψ2/3(ψ1/3 − 1) f
· (19)

Finally, the material effective thermal conductivity is

κ = φ h κs. (20)

3.2. Initial values

We define a nominal object with generic parameters found in
Table 3. Some parameters can be directly derived from ob-
servations (radius, orbit, rotation period, etc.). We use aver-
age values for these parameters. Physical parameters related
to the material (mass fractions, porosity, heat capacity, thermal
conductivity, etc.) are difficult to infer from observations, so they
are calculated using assumptions that were outlined in the previ-
ous section.

The bulk composition is a critical parameter when it comes
to the thermal evolution of bodies such as TNOs and Centaurs.
The amount of radionuclides is indeed directly linked to the dust
mass fraction within the ice matrix. Figure 1 illustrates the cen-
tral temperature evolution for the nominal object, using differ-
ent dust mass fractions with a fixed porosity. This shows that
ice-rich bodies (ρbulk = 830 kg m−3 in Fig. 1) tend to stay prim-
itive, whereas ice-poor bodies (ρbulk = 1330 kg m−3 in Fig. 1)
can be highly differentiated with internal temperatures exceed-
ing 200 K.

The choice of thermal conductivity is critical, since it affects
the efficiency of thermal processes. Considering the thermal con-
ductivity expression we used, the various values of porosity we
tested appear to have little effect on the value of κ, and thus on
the temperature distribution. The Hertz factor, on the other hand,
makes the thermal conductivity vary much more and strongly in-
fluence the temperature as shown in Fig. 2 for the nominal ob-
ject. High values of the thermal conductivity (high values of h)
induce a more efficient cooling of the mixture. We considered

Fig. 1. Evolution of the central temperature as a function of simulated
time for various compositions of the nominal object. Dust mass frac-
tions: 30% (triangles), 50% (circles), and 70% (squares), with a fixed
porosity.

Fig. 2. Evolution of the central temperature as a function of simulated
time for the nominal object, and different Hertz factors: h = 1 and h =
0.01, leading to κ = 6 × 10−1 W m−1 K−1 and 6 × 10−3 W m−1 K−1,
respectively. A formation delay of 1 Myr and the highest mass fraction
of 60Fe are considered.

a fixed value for the Hertz factor, although sintering makes it
vary with temperature: when the internal temperature increases,
the Hertz factor may also increase. The cooling would there-
fore be more effective with increasing temperature if we had ac-
counted for sintering.

The object’s formation delay (time for the object to grow to
its final size) is accounted for in the model through the decay of
radioactive isotopes that occurs during accretion. This results in
a decrease in each isotope’s abundance:

Xrad(tF) = Xrad(0) e−tF/τrad , (21)

with tF [s] the considered formation time, and Xrad(0) and τrad
found in Table 1. We tested several delays, by considering a
formation time of 1 Myr for the nominal object, and show re-
sults for a formation delay of 0 and 2 Myr. The formation time
of TNOs and Centaurs is not well understood yet. Nonetheless,
Weidenschilling (2004) suggests that 50 km-radius bodies could
have been formed in less than one million years below 30 AU.

A71, page 5 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014194&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014194&pdf_id=2


A&A 529, A71 (2011)

Recent simulations from Kenyon et al. (2008) suggest that ob-
jects with a 1000 km-radius could be accreted in 5 to 10 ×
106 years in the 20−25 AU region.

We assume that the objects undergo a cold accretion:
they are formed from smaller planetesimals that cannot effi-
ciently retain the internally produced heat (Prialnik & Podolak
1999). Therefore, accretional heating is neglected in this model.
Accumulation of gravitational potential energy is generally as-
sumed to be negligible even for large bodies such as Pluto
(McKinnon et al. 1997), so we also neglect it here. During this
formation period, it is therefore assumed that bodies do not suf-
fer from much thermal modification (Sarid & Prialnik 2009), and
an initial temperature of 30 K is reasonable. Since the formation
period has not yet been fully constrained, its influence should be
studied in detail.

The thermal emissivity ε of comet nuclei in the infrared is
poorly constrained, but Hage & Greenberg (1990) showed that
an aggregate of cometary grains could have a thermal emissiv-
ity close to 1, so we chose to use a generic value of 0.9 in our
model. TNOs and Centaurs geometric albedos are usually very
low (Stansberry et al. 2008) due to the processing of the surface
by irradiation. We chose a Bond albedo of 10% for the nom-
inal object. The corresponding geometric albedo stands in the
20%-range. While this might be high, the effect is actually very
weak for TNOs, since insolation is not the dominant heat source.

3.3. Stratification

The temperature is computed for each point of the 3D-(r, θ, ϕ)
grid. Physical parameters, such as c, κ, Xcr/Xam, and thus ρbulk,
are temperature dependent, and therefore should be computed
at each numerical iteration for every point on the 3D grid.
Nonetheless, we limit the mathematical solution of Eq. (5), de-
scribed by spherical harmonics functions, to spherical bodies
with isotropic physical parameters. Within each shell – described
by its radius r and its thickness Δr – the material properties are
assumed to be homogeneous, even if the temperature is actually
computed by accounting for its variations with the angular posi-
tion. We consider one shell per point on the r-grid, and the dis-
tance between two grid points determines the thickness of each
shell. The physical parameters inside each shell are thus defined
using an average over θ and ϕ:

X(r) = 〈X(r, θ, ϕ)〉θ,ϕ, (22)

with X any of the concerned physical parameters c, κ, and ρbulk
through its dependency on Xam and Xcr, the mass fractions of
amorphous and crystalline water ice, respectively. This might
also introduce potentially large errors in the determination of
the temperature distribution. We compared our results with
a 1D model (Capria et al. 1996) to evaluate the error made with
the stratification assumption. For objects like TNOs, it has been
found to be negligible (temperature differences less than 1%).

Objects closer to the Sun are potentially subject to het-
erogeneous differentiation (in particular crystallization) due to
insolation. In this case, using averaged parameters instead of
the real parameters might induce larger errors since these are
temperature-dependent. Our simulations have shown that the er-
ror on the temperature distribution is limited to a few Kelvins,
10 K at most for objects with perihelion distances greater
than 5 AU. Larger errors (10−20%) are nonetheless encoun-
tered closer to the Sun, particularly for heliocentric distance
below 5 AU. Therefore, this model in its current form is not
suitable for objects reaching small heliocentric distances like

comets. Improvements in the treatment of physical parameters
should be applied to reduce the error.

4. Validation

4.1. Mathematical approximation

The most critical approximation we make is related to the ex-
pansion of temperature into the basis of spherical harmonics.
This expansion is exact as long as the degree l goes to infin-
ity. For numerical reasons we have to truncate the sum (4) to a
maximum degree lmax. We thus introduce an error that should be
kept as small as possible, by considering both a high lmax and
a tight sampling of the surface temperature distribution at the
same time. Indeed, a sampling theorem only gives a perfect re-
construction for band-limited functions, which our surface tem-
perature distribution is not. Therefore, we have to make sure that
the sampling is tight enough to obtain a good approximation of
the surface temperature.

The case of lmax = 0 corresponds to the homogeneous so-
lution (with homogeneous heating and cooling), which can be
achieved at an infinite heliocentric distance. The degree lmax has
to be increased as the heliocentric distance decreases, i.e. when
the solar illumination becomes a predominant heat input, induc-
ing strong variations of the boundary condition with the angular
position on the surface. At the same time, the number of sam-
ples at the surface needs to increase, and it is indeed useless to
consider a high maximum degree for a few samples, because it
is useless to consider a large number of samples at the surface if
the maximum degree is low. Increasing lmax and the sampling in-
creases not only numerical accuracy but also the numerical cost.
In an attempt to find a compromise between the two, we per-
formed simulations aimed at finding a suitable cutoff-value for
different heliocentric distances.

Our simulations have shown that for a TNO (heliocentric dis-
tance over 30 AU), the coefficients T lm(t, r) have a negligible
value for l larger than 7: the contribution of the respective spher-
ical harmonics becomes negligible in the sum over all degrees.
This case corresponds to a sampling of 17 × 16 points of the sur-
face (θ, ϕ)-grid. For Centaurs, which are closer to the Sun, the
maximum degree should be about 15 to assure a negligible con-
tribution of all spherical harmonics actually truncated. This is the
case for a sampling of 33 × 32 points of the surface (θ, ϕ)-grid.
The temperature variations due to the choice of lmax above this
value are then limited to less than 1%. This means that increas-
ing the value of lmax and the number of samples does not induce
any noticeable change in the temperature distribution. It is, how-
ever, recommended to increase these two parameters when the
simulations are run to model a long period of time, in order to
avoid large truncation errors.

4.2. Comparison with another 3D model

We carefully compared this model (3DSH in this section)
with the 3D model developed by Rosenberg & Prialnik (2007)
(3DRos in this section). The models differ both in the mathemat-
ical and the numerical formulation of the physical processes. In
the 3Dros model, the differential equation is transformed into a
set of difference equations, applied to a 3D-(r, θ, ϕ) grid. The
temperature is directly determined for each point on the grid,
through a fully implicit scheme. For the comparison, we con-
sidered an object with initial parameters summarized in Table 4.
We considered an object closer to the Sun than a TNO, so as
to obtain more thermal input from insolation. We ran the two
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Table 4. Physical and orbital parameters used for the comparison of the
two 3D models.

Parameter Symbol Value
Radius R 1 km
Dust mass fraction Xd 1
Porosity ψ 0%
Bulk density ρbulk 3250 kg m−3

Heat capacity c 1300 J kg−1 K−1

Thermal conductivity κ 0.1 W m−1 K−1

Initial temperature Tinit 108 K
Bond albedo A 4%
Emissivity ε 0.95
Semi-major axis a 3 AU
Eccentricity e 0.
Rotation period Prot 12 h
Obliquity o 0 deg

Fig. 3. Top: temperature distribution at the surface of comparison ob-
ject determined with the 3DSH model. Middle: fractional difference
between the 3DSH model and the 3DRos model using low resolution
at the surface. Bottom: fractional difference between the 3DSH model
and the 3DRos model using a higher resolution at the surface. White
diamonds indicate the position of the subsolar point.

models with the same parameters for several orbits, and com-
pared the results especially at the surface, where insolation in-
duces 2D-(θ, ϕ) variations in the temperature. The same 3D grid
was used to make this comparison. The surface temperature
found with our model (3DSH) is illustrated in the top panel
in Fig. 3.

We evaluated the relative difference between the two models
by making the following operation: δ = (3DSH – 3DRos)/3DSH
(see middle and bottom panels of Fig. 3). We first used a sam-
pling with a few points (17 × 16 points) at the surface, although
the small heliocentric distance would require a tighter sampling.
The corresponding relative difference δ is displayed in the mid-
dle panel of Fig. 3. It shows that although the results are in

Table 5. Numerical results from the comparison between the 3DRos
and the 3DSH (two surface samplings) models.

3DRos 17 × 16 3DSH 17 × 16 3DSH 65 × 64
Tmin [K] 98.9 115.0 92.9
Tmax [K] 180.8 180.3 179.9
δ max n.a. 14% 6%
δ′ max n.a. 2% 2%
δ min n.a. 0.5% 0.5%

Notes. δ: maximum relative difference, δ′: maximum relative difference
with polar regions excluded from the calculations.

excellent agreement for most of the surface, an important dif-
ference is produced at the poles of the object. The maximum
relative difference is 14%. The discrepancy at the poles can be
due to several factors. First the temperature at the poles is not
directly computed in the 3DRos model, but extrapolated. The
lower confidence colatitudes are below 5 deg and over 175 deg.
In the 3DSH model, two factors could be implied: 1) the use of
spherical harmonics for our boundary condition at the surface,
which is not a band-limited function, and thus requires using as
tight a sampling as possible; and 2) the discontinuity produced
at the poles by the use of the sampling theorem (factor sin θ in
the coefficient a j). The maximum relative difference is reduced
to a few percent when colatitudes smaller than 5 deg and larger
than 175 deg are excluded (Table 5).

We then considered tighter samplings. The bottom panel of
Fig. 3 shows the relative difference for 65 × 64 samples at the
surface. In this case, the maximum relative difference is 6%,
which is reduced to 2% when the polar regions are excluded
from the calculation. This comparison illustrates how impor-
tant the sampling can be for objects close to the Sun in order to
reach maximum accuracy in the 3DSH model. Again, the case of
lmax = 0 corresponds to a homogeneous solution achieved at an
infinite heliocentric distance. The degree lmax has to be increased
as the heliocentric distance decreases, the number of samples
at the surface needs to increase at the same time (see previous
section).

The few percent span that we find is nonetheless excellent
considering the very different mathematical and numerical for-
mulations of the physical processes in both models. Used in the
same conditions (same sampling mainly), the 3DSH model is
about 10 times faster (12 h vs. 155 h for the 17 × 16 sampling).

4.3. Early evolution of TNOs: comparison with other models

Although focused on the volatile content of TNOs, studies per-
formed by DeSanctis et al. (2001) and Choi et al. (2002) show
that their composition could be altered by early heating due to
the decay of short-lived radioactive isotopes, to result in a lay-
ered structure. They find that undifferentiated cores could sur-
vive, though, depending on the amount of isotopes within the
dust. Choi et al. (2002) suggest that an amorphous layer as thick
as 40 km could survive at the surface of the objects. The helio-
centric distance appeared to have little influence on this early
stage of the evolution.

We confirm that the internal structure that results from the
heating by short-lived radioactive isotopes can be very diverse,
from completely primitive to strongly differentiated. The amount
of radionuclides is crucial, as suggested by Choi et al. (2002) and
illustrated by Figs. 4 and 5. Figure 4 shows the variations in the
internal temperature due to the poor constrain on the initial mass
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Fig. 4. Evolution of the central temperature as a function of simulated
time for the nominal object and a formation delay of 1.0 Myr years,
considering various fractions of short-lived radiogenic elements: 26Al
alone (circles) addition of 53Mn and 60Fe (triangles and squares).

Fig. 5. Evolution of the central temperature for the nominal object, con-
sidering different formation delays −2.0 Myr (squares), 1.0 Myr (trian-
gles), and 0.0 Myr (circles)–, as a function of the simulated time. High-
mass fraction of short-lived radiogenic element 60Fe is considered.

fraction of isotopes. Figure 5 shows the variations in the inter-
nal temperature due to isotope’s abundance decrease during the
formation delay, i.e. time for the objects to grow to their final
radii. We find that the error on the initial mass fraction of 60Fe
can induce a variation of up to 40 K in the internal temperature.
We also find that, if the nominal body is formed rapidly (less
than 0.5 Myr), it should experience a physical differentiation,
including melting of water ice in the inner parts. For all forma-
tion delays greater than 2.0 Myr, the nominal body can preserve
its initial structure due to low thermal modification. For a for-
mation delay of 1.0 Myr, all objects with a radius larger than
10 km should be differentiated, at least from a chemical point of
view, i.e. crystallization of water ice, inducing release of trapped
volatiles.

A way to change these time constraints would be to con-
sider a different density, to account for other physical processes,
or to account for the presence of salt or other material that can
lower the melting point (see Desch et al. 2009). In addition, these
results were found using the cold accretion assumption and by
neglecting both accretional heating and gravitational potential

energy. This assumption might be valid only for objects form-
ing far from the Sun, in regions where relative velocities are
low and dynamical timescales long. Accounting for the accre-
tional heating could increase the thermal modifications of ob-
jects formed closer to the Sun, where relative velocities and dy-
namical timescales are important, as shown by Merk & Prialnik
(2006).

5. Amorphous vs. crystalline water ice
on the surface of TNOs

5.1. Observations and laboratory experiments

Observations of TNOs and Centaurs have revealed the presence
of water ice on their surfaces, through the presence of two ab-
sorption bands located 1.5 and 2.0 μm in some spectra (Barkume
et al. 2008; Guilbert et al. 2009). In addition to these bands, a
feature at 1.65 μm is generally used to diagnose the presence
of crystalline water ice. This band is observed in the spectra
of largest objects (see Barucci et al. 2008b, and ref. therein).
Observations suggest that objects with diameters larger than
about 700 km that show water ice bands in their spectra should
also show the 1.65 μm band, thus indicating the presence of crys-
talline water ice. The case of smaller objects could be more con-
troversial, since the observations are very miscellaneous. Some
spectra show the 1.5 and 2.0 μm features, with or without the ad-
ditional crystalline water ice absorption band, while some others
do not show any features. Nonetheless, there is a strong observa-
tional bias concerning any detection of features on small objects’
spectra, since these would generally have signal-to-noise ratios
that are inadequate for determining the presence of any absorp-
tion band accurately.

Spectral modeling using radiative transfer models has sug-
gested that amorphous water ice should be added to the geo-
graphical and intimate mixtures in order to obtain a better fit of
these spectra, even when a 1.65 μm feature is observed (Merlin
et al. 2007). It is thus expected that both amorphous and crys-
talline water ice should be present on the surface of TNOs and
Centaurs, even though there is still no direct evidence of amor-
phous ice. In addition, spectral modeling results are not unique
and depend on the quality of the optical constants, the mixture
are chosen according to our a priori knowledge of the objects.

Finally, we caution that the inferred presence of crystalline
water ice is hard to reconcile with results from laboratory stud-
ies by Strazzulla & Palumbo (1998) that indicate that water ice is
amorphized by space weathering on short timescales. Some ex-
periments have shown that – depending on the temperature – it is
very difficult from a spectral point of view to distinguish between
amorphous water ice and amorphized crystalline water ice. Even
when crystalline water ice is amorphized, a 1.65 μm feature can
remain (Mastrapa & Brown 2006; Zheng et al. 2009). As a con-
sequence, it is still very difficult to determine whether crystalline
water ice is actually present or not on the surface of TNOs and
Centaurs. No experiment has been undertaken so far to under-
stand whether the 1.65 μm band could be produced by irradia-
tion of amorphous ice, and Cook et al. (2007) show that there
should not be any process responsible for producting crystalline
water ice at the typical TNOs heliocentric distances, except for
the internal heating. We can thus assume that the presence of the
1.65 μm band in TNOs spectra indicates at least that there once
was crystalline water ice on their surfaces.
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Table 6. Thickness of the amorphous water ice layer on the surface, for
various objects’ radii.

Object’s radius [km] 10 50 100 350 500
SP max. thickness [km] 10 2.50 2.10 1.50 1.50
SP min. thickness [km] 3 0.95 0.85 0.65 0.50
LP thickness [km] 10 50 75� 30 20

Notes. LP thickness: thickness of the amorphous layer when only the
LP isotopes are considered. (�) : in the case of the 100 km radius object,
a nucleus of 25 km radius suffers from partial crystallization.

5.2. Amorphous surface layer

Despite the internal heating due to radioactive decay, the surface
of TNOs is in thermal equilibrium. At the heliocentric distance
considered for the simulations, the surface temperature is about
45−50 K at most. This prevents the heat wave from reaching
the surface. In other words, a cold wave propagates from the
surface toward deeper layers. The competition between the heat
and cold waves is thus responsible for conserving an amorphous
water-ice layer at the surface. Choi et al. (2002) find that water
ice could stay amorphous up to 40 km below the surface. Prialnik
et al. (2008) find that about 20 km of a surface layer could stay
pristine.

We find that, when the thermal evolution is dominated by
short-lived isotopes decay, the thickness of the amorphous layer
strongly depends on the objects size, as well as on the forma-
tion delay. For small initial amounts of radioactive nuclides,
the crystallization process is less effective, because the layer
is thus thicker. Bigger objects retain a thinner layer, as shown
on Table 6, considering a formation delay of 1 Myr (maximum
thickness is achieved with the lowest mass fraction of 60Fe,
minimum thickness is obtained with its higher mass fraction).
However, objects formed close enough to the Sun for the surface
temperature to reach the crystallization threshold do not main-
tain this amorphous surface layer. They can nonetheless main-
tain an amorphous sub-surface layer squeezed between the crys-
talline deeper layers and the surface crystalline layer. The size
scales involved are small enough for collisions to erode the sur-
faces efficiently enough to let the crystalline water ice under-
neath the surface appear and contribute to the overall spectra.

When the thermal evolution is dominated by the decay of
long-lived isotopes decay, the thickness of the amorphous layer
preserved at the surface is almost independent of the object’s
size, and the largest objects still have a large amorphous surface
layer after 4.6 Gyr of thermal evolution. Although McKinnon
et al. (2008) find that objects with radii larger than 75 km can
suffer from substantial crystallization, we find that the process is
barely initiated in the central parts of an object with the nominal
composition and a 100 km radius (Fig. 6). For objects with a
larger radius, crystallization is triggered, and only a surface layer
of 20 to 40 km thick (depending on the object’s size) remains
amorphous. This confirms the size range found by Prialnik et al.
(2008) (20 km) and Choi et al. (2002) (40 km).

We also find that, although large objects with a cometary
composition can suffer from chemical differentiation, their inter-
nal temperatures do not allow for the water ice to melt. This
would require the presence of compounds that can lower the
mixture melting point or require different mixture thermal prop-
erties. Indeed, the density (which influence the amount of nu-
clides) and the thermal conductivity appear to be key parame-
ters when it comes to the thermal evolution of TNOs over the
age of the solar system. Decreasing the value of the thermal

Fig. 6. Evolution of the central temperature for objects with the nominal
composition under the effect of long-lived isotopes decay. Several radii
are shown: 50 km (black squares), 100 km (red diamonds), 200 km (blue
upward triangles), 300 km (green downward triangles), and 500 km
(orange dots).

Fig. 7. Evolution of the central temperature for an object with a
300 km radius and different densities: 1020 kg m−3 (black squares) and
1710 kg m−3 (red dots). The other parameters are those of the nominal
object. The heat source is the decay of long-lived radionuclides.

conductivity induces a slow propagation of the cold wave inside
the body, and the internal temperatures can reach higher values.
(We considered h = 0.01 to reduce the thermal conductivity.) The
surface amorphous layer is thus thinner, about 10 km. Increasing
the density of the objects obviously increases the dust content
of the material. It thus induces a more efficient heating of the
bodies. For instance, if we consider a density of 1710 kg m−3,
a 300 km-radius body would suffer from a physical differentia-
tion (presence of liquid water, see Fig. 7). Finally, when consid-
ering both a higher density and a lower thermal conductivity, the
bodies suffer from more efficient heating and less efficient cool-
ing. In this case the thickness of the surface amorphous layer is
only a few kilometers and can be efficiently eroded by collisions.

5.3. Discussion

Simulations of the thermal evolution of TNOs and Centaurs sug-
gest that, if the water ice was initially crystalline, it would have
stayed so in the internal parts of the bodies. Only the surface
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would have been amorphized by space weathering. However,
partial cratering of the surface could bring the underlying crys-
talline water ice to the surface, so that it would contribute to the
overall spectrum.

If water ice was initially amorphous, simulations performed
by various groups suggest that a layer of amorphous water ice
would be maintained at the surface of the objects, provided they
are formed far enough from the Sun (10−15 AU) to prevent any
crystallization from insolation. Short-lived isotope decay pro-
vides an efficient heating of the bodies, but the objects need
to be formed rapidly to benefit from this powerful heat source.
Regardless of the effects of the short-lived nuclides, long-lived
nuclides would heat the bodies later during the evolution. When
the internal structure is dominated by the early radioactive heat-
ing, the thickness of the amorphous layer depends on the object’s
size and formation delay (time for it to grow to its final size). For
objects that can actually suffer from crystallization, this results
in a thin layer that can be easily removed by impact cratering,
so as to reveal the crystalline water ice underneath.

When the thermal evolution is dominated by the effects of
long-lived radionuclides, the thickness of the amorphous layer
on the surface depends mainly on the thermal conduction and the
density of the objects. The simulations suggest that the layer can
be very thick, and thus should not be eroded efficiently by im-
pacts. Nonetheless, a higher density and a lower thermal conduc-
tivity would allow the largest objects (radius larger than about
300 km) to retain a thin pristine layer and even suffer from a
physical differentiation.

Therefore, our results suggest that small TNOs should stay
primitive unless 1) they were formed quickly; 2) they are debris
from the disruption of larger bodies; and 3) they were formed
close enough to the Sun (10−15 AU) for crystallization to be
triggered at the surface by insolation. The presence of crystalline
water ice at the surface of larger objects could be due to

1) rapid formation;
2) formation close to the Sun for crystallization to be triggered

by insolation;
3) a high density, which is actually observed for the large ob-

jects (Brown 2008);
4) low thermal conductivity, especially close to the surface,

which could actually be the case (results from measure-
ments, see for example Groussin et al. 2004);

5) a combination of several of these parameters.

Considering these possibilities, and not accounting for the pro-
duction of crystalline water ice by some other process, we sug-
gest that objects larger than about 300 km with densities of
at least 1500 kg m−3 would present some crystalline water ice
on their surface. Crystalline water ice might be produced from
amorphous water ice in the subsurface layers, or could come
from the presence of liquid water in the internal parts that could
then propagate toward the surface through cracks. If the thermal
conductivity of the surface layers is additionally very low, the
presence of crystalline water ice could simply be due to the ero-
sion of the surface by impact cratering, revealing the underlying
material. These conclusions highlight the importance of objects
like Quaoar (ρbulk > 2800 kg m−3, Fraser & Brown 2009) or
Orcus (ρbulk = 1500−1900 kg m−3, Brown 2008; Brown et al.
2010), which are intermediate both in sizes and densities. Their
thermal evolutions might be complex and would require detailed
studies (see Desch et al. 2009; Delsanti et al. 2010, for example).

6. Conclusions

We have developed a new 3D thermal evolution model. The main
asset of this model is to account for lateral heat fluxes, which
allow us to achieve a realistic description of thermal processes,
especially on the surface, where insolation induces temperature
variations with angular position. We compared this model to a
1D model and obtained results similar to those shown by Orosei
et al. (1999). The pole’s temperature does not decrease over time
as in 1D results, since heat is diffused from the equator toward
the poles. The comparison between the temperature evolutions
obtained with this new model and with the 3D model presented
by Rosenberg & Prialnik (2007) also shows excellent agreement.
Used in the same conditions, this new model is about ten times
faster.

Although this model in its current form is not as sophisti-
cated as 1D models from a physical point of view, it opens a
wide range of possible studies: heterogeneities of albedo at the
surface, for example. Some improvements will be made in the
future, to account for variations of physical parameters, such as
porosity or composition with the depth, and to allow angular
variations of the composition within each layer. Some volatile
compounds could also be added, and their sublimation should
also be accounted for. This new model uses a fast algorithm
that opens the possibility for many improvements, such as in-
troducing of new physical processes or heterogeneities in mate-
rial properties, that reach the level of physical sophistication of
current 1D models.

The comparison of results for the early thermal evolution of
TNOs obtained with this model and others show excellent agree-
ment. We indeed confirmed that classical Kuiper Belt objects
could have remained primitive, whereas scattered disk objects
and Oort cloud objects could be more differentiated. We also
tried to interpret the presence/absence of crystalline water ice at
the surface of TNOs. We find that unless the objects are formed
rapidly, the thermal evolution is dominated by the decay of long-
lived isotopes. In this case, only large objects (R > 300 km) with
a density of at least 1500 kg m−3 should contain crystalline wa-
ter ice close to the surface. We also find that intermediate objects
(diameters ranging from 500 to 1000 km) should be an interest-
ing population, deserving detailed observational and modeling
studies, since these objects would be at the transition, both in
sizes and densities, between differentiated and primitive bodies.
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