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The divergent atomic partition function or how to assign
correct statistical weights to bound states
Vincent Ballenegger

Soon after the spectrum of the hydro-
gen atom was understood theoreti-
cally, a difficult problem appeared:
how to do correct statistical mechan-
ical calculations that include bound
states when the internal partition
function of the hydrogen atom di-
verges? According to Bohr, the hy-
drogen atom has an infinite number
of bound states with energies En =
−|EH |/n2 and degeneracies gn = n2

(EH � −13.6 eV). Since the terms in
the atomic partition function

Zbound(T )=
∞∑

n=1
gn e−En /kT =∞

grow asymptotically as n2, the se-
ries is strongly divergent. Such di-
vergences of the electronic partition
function plague actually all internal
atomic, ionic and molecular parti-
tion functions. The divergence arises
from the long-range character of the
Coulomb interaction, which allows
for an infinite number of bound
states.

The paper by Ebeling et al. [1]
in the present issue starts with an
interesting historical review of this
problem and its solution, and then
gives a novel quantum statistical me-
chanical derivation of an equation
of state for a reacting hydrogen gas
H � e +p that should be reliable in
the regime where atomic recombina-
tion/dissociation prevails.

The problem with the partition
function Zbound(T ) is that it de-
scribes a single hydrogen atom at

Figure 1 What happens to the Rydberg
states of a single hydrogen atom in a
plasma at finite density?

finite temperatures with an unlim-
ited accessible volume. In such a
situation, Rydberg states with very
large n do exist. There is also an in-
finite number of scattering states. At
thermal equilibrium, the atom will
actually always be found in a disso-
ciated state, because entropy wins
over energy at low densities.

In a gas at finite density, the
atomic partition function is con-
vergent because the space avail-
able for bound states is finite (states
with large n cannot exist, see fig-
ure). Let us consider, as in [1], a
partially ionized hydrogen gas de-
scribed within the physical picture,

that is as a quantum gas of elec-
trons and protons interacting via
the Coulomb potential. The parti-
cles feel an effective screened inter-
action, given at low densities by the
Debye formula exp(−κr )/r , where
κ=

√
4πe2ρfree/kT is the inverse De-

bye screening length and ρfree is the
density of ionized particles. Thanks
to screening, the number of bound
states (which depends now on den-
sity and temperature) is finite, and a
finite atomic partition function can
be built with them. That approach
does however not provide a fully sat-
isfying answer to the original prob-
lem. For instance, if one tries to com-
pute the deviations at low densities
from the ideal gas law caused by the
interactions between the particles
(with possible formation of bound
states), the problem of the diver-
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gence of the atomic partition func-
tion re-appears since screening ef-
fects are evacuated in the low den-
sity limit (κ → 0 as ρ → 0). Indeter-
minate products of the form ∞× 0
arise, which can only be resolved by
a better understanding of the subtle
interplay between the contributions
from bound states, scattering states
and screening effects.

As recalled in [1], a complete solu-
tion to the problem of the divergence
of the atomic partition function has
been obtained in the context of
asymptotic low-density (virial) ex-
pansions. The solution involves as
ingredient the so-called Brillouin-
Planck-Larkin partition function

ZBPL(T )=
∞∑

n=1
gn

(
e−En /kT −1+ En

kT

)
,

first introduced by Brillouin follow-
ing a work of Planck (see [1] for the
historical perspective). A full under-
standing of the emergence of the
BPL atomic partition function in the
virial expansion using methods of
many-body quantum statistical me-
chanics was achieved in the sixties
with works of Larkin [2] and Ebeling
[3,4]. In those works, screening plays
a crucial role to ensure the finite-
ness of all quantities, giving rise in
particular to the subtracted terms in
the BPL partition function. As em-
phasized in Sect. 3 of [1], ZBPL(T )
is only a part of the second virial
coefficient that can be expressed
in terms of Ebeling direct and ex-
change functions Q(T ) and E(T ) [5].
Strictly speaking, it’s only the sum
of all terms in the second virial co-
efficient that makes an unambigu-
ous sense, free of any arbitrary defi-
nition. However, it turns out that this
coefficient is essentially determined
by ZBPL(T ) as long as the temper-
ature is not too high. Other defini-
tions of the partition function for a
hydrogen atom are possible, but it is
crucial that there is a correct count-
ing of all contributions (as provided

by the full second virial coefficient),
without any missing term nor double
counting [1].

The virial expansion is obtained
from the asymptotic limit ρ → 0 at
fixed temperature T , and can hence
only describe fully ionized phases
(because entropy always wins over
energy as ρ → 0). The contributions
of two-body bound states (hydro-
gen atoms) appear in that expan-
sion inside the second virial coeffi-
cient, that is as a small correction
of order ρ2. Deriving accurate equa-
tions, without any double counting
of states, for the hydrogen gas in
regimes where a substantial fraction
of electrons and protons are recom-
bined into hydrogen atoms (or even
molecules) is a challenging theoreti-
cal task with important practical im-
plications in astrophysics and other
fields. Significant progress has been
made recently on that topic [1, 6–10].

Ebeling et al. [1] derive an equa-
tion of state (EOS) for a partially
ionized hydrogen gas by performing
partial resummations in the virial ex-
pansion in such a way that the result-
ing EOS has a structure compatible
not only with the virial expansion,
but also with the Saha equation for
the ionization/recombination equi-
librium of hydrogen atoms (imple-
mented with the BPL partition func-
tion). The construction of this EOS
involves a suitable inversion of low-
fugacity expansions and includes
degeneracy effects on the ionized
charges at high density. Their analyt-
ical EOS compares satisfactorily with
known chemical models, though a
stringer test would be to compare to
accurate quantum Monte Carlo sim-
ulation results in the expected valid-
ity domain of the theory.

The EOS derived in [1] neglects
the possible formation of hydro-
gen molecules and the effects of
atom-atom and atom-charge inter-
actions. We note that the formation
in the e-p plasma of any chemi-

cal species (H , H−, H2, H+
2 , H−

2 ,
H+

3 . . . ), and their (screened) interac-
tions with the ionized charges and
with other chemical species, can be
described fully consistently, without
any double counting of states, by
the Screened Cluster Representation
(SCR) introduced in [6]. Parts of the
SCR can be viewed as a formal-
ization of ideas first introduced by
Rogers [11]. The statistical weight of
any bound entity in the SCR involves
a finite internal partition function
that depends solely on the funda-
mental physical constants, and that
can be viewed as a generalization
of Ebeling’s two-body virial func-
tions Q and E to a higher number
of interacting particles [6]. The SCR
has been used to derive the Scaled
Low-Temperature (SLT) equation of
state [7–9] for a partially ionized hy-
drogen gas, which is asymptotically
exact in a coupled low-density – low-
temperature limit. Though it is ob-
tained in the vicinity of a T → 0 limit,
the SLT EOS reduces, as it should, to
the virial expansion when one lets
ρ → 0 at fixed T , providing thus a
rigorous extension of the validity do-
main of the usual virial expansion
into the partially (or fully) recom-
bined atomic phase.

The work in [1] and [10] con-
tain interesting results for achiev-
ing a good description of the ef-
fects of bound states from low up to
quite high density. The destruction
of bound states at high density (Mott
transition to full ionization) is stud-
ied in [10] for temperature above
10 000 K by introducing dressed
atoms (the shift in the atomic lev-
els are determined from an effective
wave equation which takes into ac-
count Pauli blocking and the Fock
self-energy). We note that the afore-
mentioned recent works might serve
also as guides for improving the ac-
curacy of current well established
chemical models [12, 13]. A full and
controlled description, within the
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physical picture, of the contribu-
tions of bound states in the high den-
sity regime, including temperatures
below 10 000 K where H2 molecules
dominate and where the famous
plasma phase transition might take
place, is still an open and challeng-
ing problem.
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